Skip header and navigation

6 records – page 1 of 1.

Blast-Resistant Testing for Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue843
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Forest Products Laboratory
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Exterior Walls
Blast Loads
Protection
Research Status
In Progress
Summary
Opening new markets for the use of CLT that can capitalize on the strength and speed of construction allowed by the technology creates the best opportunity for wood product market growth. One such market is the Department of Defense (DoD), representing an estimated 148 million board feet of additional lumber production. Wood products have been significantly under-represented in the DoD construction market because of their perceived performance in blast conditions. The objectives of this project are to develop a design methodology and to demonstrate performance for exterior bearing CLT walls used in buildings subject to force protection requirements. This methodology should be published by U.S. Army Corp of Engineers – Protective Design Center to be used by engineers for designing CLT elements to withstand blast loads as determined by code requirements and specific project conditions.
Resource Link
Less detail

Comparison of Operational Energy Performance among Exterior Wall Systems for Mid-Rise Construction in Canada

https://research.thinkwood.com/en/permalink/catalogue355
Year of Publication
2015
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Wang, Jieying
Morris, Paul
Organization
FPInnovations
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Energy Performance
Keywords
Mid-Rise
Canada
Exterior Walls
Energy Consumption
Residential
National Energy Code of Canada for Buildings
Climate
Steel-Stud Framing
Research Status
Complete
Summary
The largest source of energy consumption and greenhouse gas emissions in Canada and around the world is buildings. As a consequence, building designers are encouraged to adopt designs that reduce operational energy, through both increasingly stringent energy codes and voluntary green building programs that go beyond code requirements. Among structural building materials, wood has by far the lowest heat conductivity. As a result it is typically easier to meet certain insulation targets (e.g., thermal transmission and effective thermal resistance) with wood-based wall systems when following current construction practices. Good envelopes greatly contribute to energy efficient buildings. However, there are many factors in addition to building envelope insulation levels that affect the operational energy of a building. This study aims to provide designers with information which will assist them to choose energy efficient exterior wall systems by providing energy consumption estimates for an archetypal 6-storey residential building. Comparisons were made among several exterior wall systems including light wood-framing, cross-laminated timber (CLT), steel-stud framing, and window walls, for a range of structural systems including structural steel, light wood-frame, CLT, heavy timber, and concrete. The opaque exterior wall assemblies targeted meeting the minimum thermal requirements based on the National Energy Code of Canada for Buildings (NECB. NRC 2011). A 3-D method was used to calculate effective R-values of these exterior walls by taking into account all thermal bridging, in comparison with a parallel-path flow method in compliance with the NECB. Three glazing ratios, including 30%, 50%, and 70%, and two efficiency levels for Heating, Ventilation, & Air Conditioning (HVAC) systems, termed basic HVAC and advanced HVAC, were also assessed. Whole-building energy consumption was simulated using EnergyPlus. Four climates, from Zone 4 to Zone 7, with cities of Vancouver, Toronto, Ottawa, and Edmonton to represent each climate, were selected in this study. The energy assessment was conducted by Morrison Hershfield.
Online Access
Free
Resource Link
Less detail

Fire Demonstration: Cross-Laminated Timber Stair/Elevator Shaft

https://research.thinkwood.com/en/permalink/catalogue1277
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Shafts and Chases
Author
Su, Joseph
Muradori, Saša
Organization
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Shafts and Chases
Topic
Fire
Keywords
Origine
Fire Resistance
Exterior Walls
Research Status
Complete
Summary
The consortium of Nordic Wood Structures, EBC and Yvan Blouin Architect are designing a 13- storey residential building using a mass timber structure. The project, named "Origine" is proposed to be located in the eco-neighbourhood of Pointe-aux- Lièvres in Quebec City and to start construction in spring 2015. The mass timber structure would be composed primarily of glue-laminated timber and crosslaminated timber (CLT). The cross-laminated timber consists of at least three orthogonally bonded layers of solid-sawn lumber that are laminated by gluing of longitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight and plane timber intended for floor, roof or wall applications. The National Research Council Canada (NRC) was requested to assist in the demonstration of an alternative solution to noncombustible construction as prescribed in the Québec Construction Code [1] and the National Building Code of Canada (NBCC) [2]. Three series of fire tests were conducted at NRC to investigate: the fire endurance (fire resistance) of CLT floor and wall assemblies [3], the fire performance of a CLT exterior wall assembly [4], and the fire demonstration of a CLT stair/elevator shaft for the proposed building. This report provides the description and results of the fire demonstration for the CLT stair/elevator shaft. This fire demonstration was funded by the Government of Quebec’s Ministère des Forêts, de la Faune et des Parcs through FPInnovations.
Online Access
Free
Resource Link
Less detail

Fire Safety Summary: Fire Research Conducted for the Project on Mid-Rise Wood Construction

https://research.thinkwood.com/en/permalink/catalogue43
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Su, Joseph
Lougheed, Gary
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Fire
Keywords
Encapsulation
Mid-Rise
Safety
Tall Wood
Exterior Walls
Research Status
Complete
Summary
Working in collaboration with the Canadian Wood Council and FPInnovations and in partnership with Natural Resources Canada and the governments of Ontario, Quebec and British Columbia, the National Research Council conducted a comprehensive research project, Research Consortium for Wood and Wood-Hybrid Mid-rise Buildings. This consortium project aimed to develop technical information that could be used to support acceptable solutions that meet the NBC’s objectives for fire safety, acoustics, and building envelope performance, in order to facilitate the use of wood-based structural materials in mid-rise buildings. The objectives of the Wood and Wood-Hybrid Midrise Buildings research project were to develop performance data and technical solutions in the areas of fire safety, acoustics and building envelope pertinent to the use of wood-based structural materials in mid-rise buildings, i.e. to develop an alternative solution to meet the 2010 NBC requirements for non-combustible construction for 5-6 storey (and taller) buildings. This project was intended to address the immediate needs for technical solutions for mid-rise wood buildings that do not compromise the minimum levels of safety and performance required by the 2010 NBC in the areas of fire safety and fire protection, acoustics, and building envelope performance.
Online Access
Free
Resource Link
Less detail

Mid-Rise Wood: Characterization of Hygrothermal Properties

https://research.thinkwood.com/en/permalink/catalogue49
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Mukhopadhyaya, Phalguni
Bundalo-Perc, Sladana
van Reenen, David
Wang, Jasmine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Envelope
Exterior Walls
Hygrothermal
Mid-Rise
Research Status
Complete
Summary
To evaluate the building envelope performance of the generic exterior wall assemblies developed for use in mid-rise wood buildings, hygrothermal properties of materials used in the assemblies are needed as input data for hygrothermal modelling. Hygrothermal properties were developed for fire retardant treated plywood, regular gypsum sheathing, spray polyurethane foam and cross-laminated timber. This report documents results of the hygrothermal property determinations. The objective of this part of the research project was to generate a set of reliable and representative data on hygrothermal properties of a number of selected building materials as mentioned below. 1. D-Blaze Treated Plywood 2. Dricon Treated Plywood 3. Gypsum Sheathing 4. Closed Cell Spray Polyurethane Foam Insulation (Purple in Colour)
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly using a Simulated Cross-Laminated Timber Wall Assembly with Gypsum Sheathing

https://research.thinkwood.com/en/permalink/catalogue10
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Taber, Bruce
Gibbs, Eric
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Fire
Keywords
Gypsum
Mid-Rise
Testing
Exterior Walls
Full-Scale
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on May 22, 2012 on a simulated cross-laminated timber (CLT) wall assembly with an attached insulated lightweight wood frame assembly protected using gypsum sheathing. The test was conducted in accordance with CAN/ULC-S134 [3].
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.