Use of timber as a construction material has entered a period of renaissance since the development of high-performance engineered wood products, enabling larger and taller buildings to be built. In addition, due to substantial contribution of the building sector to global energy use, greenhouse gas emissions and waste production, sustainable solutions are needed, for which timber has shown a great potential as a sustainable, resilient and renewable building alternative, not only for single family homes but also for mid-rise and high-rise buildings. Both recent technological developments in timber engineering and exponentially increased use of engineered wood products and wood composites reflect in deficiency of current timber codes and standards. This paper presents an overview of some of the current challenges and emerging trends in the field of seismic design of timber buildings. Currently existing building codes and the development of new generation of European building codes are presented. Ongoing studies on a variety topics within seismic timber engineering are presented, including tall timber and hybrid buildings, composites with timber and seismic retrofitting with timber. Crucial challenges, key research needs and opportunities are addressed and critically discussed.
The nonlinear behaviour of connections between structural elements is critical to the performance of mass-timber structures under seismic loads. However, limited work has been developed in nonlinear modelling and fragility assessment of mass-timber structures. To improve the accuracy of this approach, in particular when considering structures with ring-doweled moment-resisting connections, a nonlinear modelling approach and fragility assessment are proposed and a prototype example of a three-story building is analysed herein as a case study. For the case study, connections and members were designed following the prescriptions in Eurocode 5 and Eurocode 8, considering a high ductility structure. The mechanical properties of the structure are modelled as random variables to evaluate the impact of uncertainty on the prediction of the structural performance, in particular, on the probability of occurrence of ductile and brittle failure modes. The structure is studied under both nonlinear static analysis and multi-record incremental dynamic analysis. From these, fragility curves for different damage levels are computed and a q-factor is proposed. Results indicate that the requirements of Eurocode 5 and Eurocode 8 are sufficient to guarantee adequate performance for this type of structure, albeit these may be overconservative. Moreover, it is shown that uncertainties in material properties have a significant impact on the collapse capacity of these structures.
The performance of heavy-timber structures in earthquakes depends strongly on the inelastic behavior of the mechanical connections. Nevertheless, the nonlinear behavior of timber structures is only considered in the design phase indirectly through the use of an R-factor or a q-factor, which reduces the seismic elastic response spectrum. To improve the estimation of this, the seismic performance of a three-story building designed with ring-doweled moment resisting connections is analyzed here. Connections and members were designed to fulfill the seismic detailing requirements present in Eurocode 5 and Eurocode 8 for high ductility class structures. The performance of the structure is evaluated through a probabilistic approach, which accounts for uncertainties in mechanical properties of members and connections. Nonlinear static analyses and multi-record incremental dynamic analyses were performed to characterize the q-factor and develop fragility curves for different damage levels. The results indicate that the detailing requirements of Eurocode 5 and Eurocode 8 are sufficient to achieve the required performance, even though they also indicate that these requirements may be optimized to achieve more cost-effective connections and members. From the obtained fragility curves, it was verified that neglecting modeling uncertainties may lead to overestimation of the collapse capacity.
This paper presents a study on the seismic design of hybrid multi-storey wood buildings made of CLT and Light-Frame shear walls acting at the same level. Within the framework of the force-based method, the aim of this study is to propose a simple formulation in order to establish the value of the q-factor of the hybrid system which could be also implemented in seismic design codes such as Eurocode 8. This was achieved by analysing the results of nonlinear dynamic (time-history) analyses performed on a four storey case-study building with different combinations of CLT and Light-Frame shear walls.
Fulfilment of conditions given by European design codes for structures in seismic regions presents a problem during the design of new and repairing of existing structures. Although there are various options, obvious choices are solutions which provide increase of rigidity and seismic capacity with minimal increase of structural mass. Current research at the University of Zagreb, performed in cooperation with the University of Ljubljana, is leading to the development of special kind of high-ductility hybrid panel made of timber frame with supporting laminated glass infill, which, in addition to strength and stiffness, is also characterized by high level of seismic energy dissipation. This paper objective is to give preliminary assessment of application of hybrid panel as seismic reinforcement in concrete, steel and timber frame structures. Finally, to provide more accurate input data, numerical results are compared for the structures tested in full-scale shaking table test.
Three innovative massive wooden shear-wall systems (Cross-Laminated-Glued Wall, Cross-Laminated-Stapled Wall, Layered Wall with dovetail inserts) were tested and their structural behaviour under seismic action was assessed with numerical simulations. The wall specimens differ mainly in the method used to assemble the layers of timber boards composing them. Quasi-static cyclic loading tests were carried out and then reproduced with a non-linear numerical model calibrated on the test results to estimate the most appropriate behaviour factor for each system. Non-linear dynamic simulations of 15 artificially generated seismic shocks showed that these systems have good dissipative capacity when correctly designed and that they can be assigned to the medium ductility class of Eurocode 8. This work also shows the influence of deformations in wooden panels and base connectors on the behaviour factor and dissipative capacity of the system.
Cross Laminated Timber (CLT) structures are nowadays increasingly used worldwide and mostly in Europe where the system originated. However, in spite of this diffusion which led to the construction of a great number of multi-storey buildings all over Europe, still Eurocodes are almost completely missing provisions for CLT designers, especially regarding the seismic design. Nevertheless, Eurocode 8 requires in most cases, due to the regularity criteria being not fulfilled for most of the buildings, the use of the modal response spectrum analysis method, i.e. the linear dynamic analysis. This method requires the correct estimation of the lateral stiffness of the building in order to accurately calculate the design seismic forces in the building, which may be significantly underestimated or overestimated depending on the size of the building and the shape of the design spectrum. This can be done by modelling each connection with different methods that are often based on available test results, which are not easily accessible by a practicing engineer. This paper provides a design approach for dynamic linear modelling of CLT structures using SAP 2000. Equations are proposed based on available design codes and literature references, and used to design a 3-storey case study building. Further provisions for the seismic design of CLT buildings which are not included in Eurocode 8 are also given. Finally, the proposed design model is also compared with the results of the shaking table tests conducted in 2006 in Japan by CNR-IVALSA on a three-storey CLT building.