Skip header and navigation

16 records – page 1 of 2.

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2618
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Wooden Building Technology
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2650
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

Comparative Energy Consumption Study on Tall Cross Laminated Timber Buildings for U.S. Climates

https://research.thinkwood.com/en/permalink/catalogue1636
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Khavari, Ali
Tabares-Velasco, Paulo
Zhao, Shichun
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
US
Energy Efficiency
Internal Loads
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3134-3141
Summary
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy...
Online Access
Free
Resource Link
Less detail

Constructing Our Environments: A Material Comparison

https://research.thinkwood.com/en/permalink/catalogue161
Year of Publication
2014
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)

Design of an Energy-Efficient and Cost-Effective Cross Laminated Timber (CLT) House in Waikuku Beach, New Zealand

https://research.thinkwood.com/en/permalink/catalogue2364
Year of Publication
2016
Topic
Design and Systems
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bournique, Guillaume
Publisher
KTH Royal Institute of Technology
Year of Publication
2016
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Cost
Energy Performance
Keywords
Energy Efficiency
Cost-Competitive
Residential
Housing
Energy Consumption
Language
English
Research Status
Complete
Summary
The Canterbury earthquakes in 2010 and 2011 caused significant damage to the Christchurch building stock. However, it is an opportunity to build more comfortable and energy efficient buildings. Previous research suggests a tendency to both under heat and spot heat, meaning that New Zealand dwellings are partly heated and winter indoor temperatures do not always meet the recommendations of the World Health Organization. Those issues are likely to be explained by design deficiency, poor thermal envelope, and limitations of heating systems. In that context, the thesis investigates the feasibility of building an energy efficient and cost-competitive house in Christchurch. Although capital costs for an energy efficient house are inevitably higher, they are balanced with lower operating costs and improved thermal comfort. The work is supported by a residential building project using Cross Laminated Timber (CLT) panels. This atypical project is compared with a typical New Zealand house (reference building), regarding both energy efficiency and costs. The current design of the CLT building is discussed according to passive design strategies, and a range of improvements for the building design is proposed. This final design proposal is determined by prioritizing investments in design options having the greatest effect on the building overall energy consumption. Building design features include windows efficiencies, insulation levels, optimized thermal mass, lighting fixture, as well as HVAC and domestic hot water systems options. The improved case for the CLT building is simulated having a total energy consumption of 4,860kWh/year, which corresponds to a remarkable 60% energy savings over the baseline. The construction cost per floor area is slightly higher for the CLT building, about 2,900$/m² against 2,500$/m² for the timber framed house. But a life cycle cost analysis shows that decreased operating costs makes the CLT house cost-competitive over its lifetime. The thesis suggests that the life cycle cost of the CLT house is 14% less than that of the reference building, while the improved CLT design reaches about 22% costs savings.
Online Access
Free
Resource Link
Less detail

Energy and Environmental Performance of Multi-Story Apartment Buildings Built in Timber Construction Using Passive House Principles

https://research.thinkwood.com/en/permalink/catalogue1203
Year of Publication
2013
Topic
Energy Performance
Environmental Impact
Cost
Author
Kildsgaard, Ivana
Jarnehammar, Anna
Widheden, Anna
Wall, Maria
Publisher
MDPI
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Topic
Energy Performance
Environmental Impact
Cost
Keywords
Energy Efficiency
Europe
Multi-Story
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
This paper presents energy and environmental performance analyses, a study of summer indoor temperatures and occupant behavior for an eight story apartment building, with the goal to combine high energy efficiency with low environmental impact, at a reasonable cost. Southern Portvakten building is built with prefabricated timber elements...
Online Access
Free
Resource Link
Less detail

Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study

https://research.thinkwood.com/en/permalink/catalogue695
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Khavari, Ali
Pei, Shiling
Tabares-Velasco, Paulo
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Energy Consumption
Energy Efficiency
Residential
Sensitivity Analysis
Language
English
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross laminated timber (CLT) is a new panelized mass timber product that is suitable for building tall wood buildings (higher than eight stories) because of its structural robustness and superior fire resistance as compared with traditional light-framed ...
Online Access
Free
Resource Link
Less detail

Environmental Consideration of the Building Envelope in Wood Projects - Materials and LCA Approach

https://research.thinkwood.com/en/permalink/catalogue2672
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Environmental Impact
Energy Performance
Keywords
Life Cycle Analysis
Energy Efficiency
Curtain Wall
Research Status
In Progress
Notes
Project contact is Pierre Blanchet at Université Laval
Summary
The work of Lessard et al. (2017) demonstrated that the building envelope was an important system in the building in terms of environmental impact, but only took into account the external components of the building envelope. This project will perform a life cycle analysis of the main building envelopes for a typical building under commercial construction. By relying on our design partners, the main systems and associated materials will be analyzed in a cradle-to-grave approach. It is desirable to identify hot spots and to indicate avenues for product development in order to reduce the envelope's environmental footprint. Among the scenarios to be considered: light framework, CLT, curtain walls and all their possible variants, but also commonly used non-biobased systems. The comparison between the systems studied will be based on an equivalent energy efficiency performance.
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America

https://research.thinkwood.com/en/permalink/catalogue2620
Year of Publication
2013
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Finch, Graham
Wang, J.
Ricketts, D.
Organization
FPInnovations
Year of Publication
2013
Format
Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Energy Performance
Design and Systems
Keywords
Thermal Performance
Multi-Family
Residential Buildings
Energy Efficiency
Building Code
Language
English
Research Status
Complete
Summary
The Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America was developed by FPInnovations in collaboration with RDH Building Engineering Ltd., the Homeowner Protection Office, Branch of BC Housing, and the Canadian Wood Council. The project is part of efforts within the Advanced Building Systems Program of FPInnovations to assemble and add to the knowledge base regarding Canadian wood products and building systems. The team of the Advanced Building Systems Program works with members and partners of FPInnovations to address critical technical issues that threaten existing markets for wood products or which limit expansion or access to such new markets. This guide was developed in response to the rapidly changing energy-efficiency requirements for buildings across Canada and the United States. This guide serves two major objectives: To assist architects, engineers, designers and builders in improving the thermal performance of building enclosures of wood multi-unit residential buildings (MURBs), in response to the increasingly stringent requirements for the energy efficiency of buildings in the marine to cold climate zones in North America (U.S. DOE/ASHRAE and NECB Climate Zones 5 through 7 and parts of Zone 4); To advance MURB design practices, construction practices, and material use based on best knowledge, in order to ensure the durable performance of wood-frame building enclosures that are insulated to higher levels than traditional wood-frame construction. The major requirements for thermal performance of building enclosures are summarized (up to February 2013), including those for the following codes and standards: 2011 National Energy Code of Canada for Buildings (2011 NECB); 2013 interim update of the 2010 National Building Code of Canada (2010 NBC, Section 9.36–Energy Efficiency); 2012 International Energy Conservation Code (2012 IECC); American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1– Energy Standard for Buildings Except Low-Rise Residential Buildings (2004, 2007, and 2010 versions). In addition to meeting the requirements of the various building codes and standards, a building may need to incorporate construction practices that reflect local preferences in material use, design and construction. Regional climate differences will also affect design solutions. This guide primarily addresses above-grade walls, below-grade walls and roofs of platform wood-frame construction. It also includes information regarding thermal performance of cross-laminated timber (CLT) assemblies as well as the use of non-bearing wood-frame exterior walls (infill walls) in wood post-and-beam and concrete structures. Examples of thermal resistance calculations, building assemblies, critical interface detailing, and appropriate material selection are provided to help guide designers and builders meet the requirements of the various energy-efficiency codes and standards, achieve above-code performance, and ensure long-term durability. This guide builds on the fundamentals of building science and on information contained within the Building Enclosure Design Guide: Wood-Frame Multi-Unit Residential Buildings, published by the Homeowner Protection Office, Branch of BC Housing. This guide is based on the best current knowledge and future updates are anticipated. The guide is not intended to be a substitute for professional advice that considers specific building parameters.
Online Access
Free
Resource Link
Less detail

16 records – page 1 of 2.