Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America
The Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America was developed by FPInnovations in collaboration with RDH Building Engineering Ltd., the Homeowner Protection Office, Branch of BC Housing, and the Canadian Wood Council.
The project is part of efforts within the Advanced Building Systems Program of FPInnovations to assemble and add to the knowledge base regarding Canadian wood products and building systems. The team of the Advanced Building Systems Program works with members and partners of FPInnovations to address critical technical issues that threaten existing markets for wood products or which limit expansion or access to such new markets. This guide was developed in response to the rapidly changing energy-efficiency requirements for buildings across Canada and the United States.
This guide serves two major objectives:
To assist architects, engineers, designers and builders in improving the thermal performance of building enclosures of wood multi-unit residential buildings (MURBs), in response to the increasingly stringent requirements for the energy efficiency of buildings in the marine to cold climate zones in North America (U.S. DOE/ASHRAE and NECB Climate Zones 5 through 7 and parts of Zone 4);
To advance MURB design practices, construction practices, and material use based on best knowledge, in order to ensure the durable performance of wood-frame building enclosures that are insulated to higher levels than traditional wood-frame construction.
The major requirements for thermal performance of building enclosures are summarized (up to February 2013), including those for the following codes and standards:
2011 National Energy Code of Canada for Buildings (2011 NECB);
2013 interim update of the 2010 National Building Code of Canada (2010 NBC, Section 9.36–Energy Efficiency);
2012 International Energy Conservation Code (2012 IECC);
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1– Energy Standard for Buildings Except Low-Rise Residential Buildings (2004, 2007, and 2010 versions).
In addition to meeting the requirements of the various building codes and standards, a building may need to incorporate construction practices that reflect local preferences in material use, design and construction.
Regional climate differences will also affect design solutions.
This guide primarily addresses above-grade walls, below-grade walls and roofs of platform wood-frame construction. It also includes information regarding thermal performance of cross-laminated timber (CLT) assemblies as well as the use of non-bearing wood-frame exterior walls (infill walls) in wood post-and-beam and concrete structures.
Examples of thermal resistance calculations, building assemblies, critical interface detailing, and appropriate material selection are provided to help guide designers and builders meet the requirements of the various energy-efficiency codes and standards, achieve above-code performance, and ensure long-term durability. This guide builds on the fundamentals of building science and on information contained within the Building Enclosure Design Guide: Wood-Frame Multi-Unit Residential Buildings, published by the Homeowner Protection Office, Branch of BC Housing.
This guide is based on the best current knowledge and future updates are anticipated. The guide is not intended to be a substitute for professional advice that considers specific building parameters.
This paper presents energy and environmental performance analyses, a study of summer indoor temperatures and occupant behavior for an eight story apartment building, with the goal to combine high energy efficiency with low environmental impact, at a reasonable cost. Southern Portvakten building is built with prefabricated timber elements using passive house principles in the North European climate. Energy performance was analyzed through parametric studies, as well as monitored energy data, and complemented with analysis of occupant behavior during one year. Results show that airtight, low-energy apartment buildings can be successfully built with prefabricated timber elements in a cold climate. The monitored total energy use was 47.6 kWh/m2, excluding household electricity (revised to a normal year), which is considerably lower than of a standard building built today in Sweden—90 kWh/m2. However, the occupancy level was low during the analyzed year, which affects the energy use compared to if the building had been fully occupied. Environmental analysis shows that the future challenges lie in lowering the household and common electricity use, as well as in improving the choices of materials. More focus should also lie on improving occupant behavior and finding smart solar shading solutions for apartment buildings.
Our built environment is constantly adapting to changing factors: technology, the state of the economy, material resource availability, and, in turn, environmental conditions. The latter has gained notable importance in popular discourse, and especially in the architecture and construction professions. However, as much as we see terms such as “sustainability” and “green” in our everyday lives, government and industry are slow to take action investing in our future environment. Material resources in the building industry are worth investigating. Timber, used as a structural material to compete with concrete and steel, brings more energy efficient and natural renewable resources to our growing cities. In order to provide a broader perspective of how we as a society use concrete, steel, and timber, I will compare the three building materials in a four part guideline: Environmental Performance, Ease of Manufacture, Organized Assembly, and Design Flexibility.
The Canterbury earthquakes in 2010 and 2011 caused significant damage to the Christchurch building stock. However, it is an opportunity to build more comfortable and energy efficient buildings. Previous research suggests a tendency to both under heat and spot heat, meaning that New Zealand dwellings are partly heated and winter indoor temperatures do not always meet the recommendations of the World Health Organization. Those issues are likely to be explained by design deficiency, poor thermal envelope, and limitations of heating systems.
In that context, the thesis investigates the feasibility of building an energy efficient and cost-competitive house in Christchurch. Although capital costs for an energy efficient house are inevitably higher, they are balanced with lower operating costs and improved thermal comfort. The work is supported by a residential building project using Cross Laminated Timber (CLT) panels. This atypical project is compared with a typical New Zealand house (reference building), regarding both energy efficiency and costs.
The current design of the CLT building is discussed according to passive design strategies, and a range of improvements for the building design is proposed. This final design proposal is determined by prioritizing investments in design options having the greatest effect on the building overall energy consumption. Building design features include windows efficiencies, insulation levels, optimized thermal mass, lighting fixture, as well as HVAC and domestic hot water systems options. The improved case for the CLT building is simulated having a total energy consumption of 4,860kWh/year, which corresponds to a remarkable 60% energy savings over the baseline.
The construction cost per floor area is slightly higher for the CLT building, about 2,900$/m² against
2,500$/m² for the timber framed house. But a life cycle cost analysis shows that decreased operating costs makes the CLT house cost-competitive over its lifetime. The thesis suggests that the life cycle cost of the CLT house is 14% less than that of the reference building, while the improved CLT design reaches about 22% costs savings.
Cross-laminated timber (CLT) is a new panelized mass timber product that is suitable for building tall wood buildings (higher than eight stories) because of its structural robustness and superior fire resistance as compared with traditional light-framed wood systems. A number of tall CLT buildings have been constructed around the world in the past decade, and taller projects are being planned. The energy efficiency of this emerging building type was evaluated numerically in this comparative study with the use of a building energy simulation program. A 10-story multiunit residential building model constructed using CLT was simulated and compared with a light-frame metal construction model with the same floor plan. A sensitivity analysis was also conducted to study the impact of different weather profiles, building types, and internal load conditions on building energy consumption performance. It was concluded that CLT generally provides significant improvement on heating energy efficiency as a heavy and air-tight envelope, but its energy performance efficiency can be affected by weather, building size, internal loading, and HVAC control.
This paper aims to discuss timber-wood lightweight concrete composites for application in wall components for buildings. The aim is to develop a multi-layer wall system composed of wood lightweight concrete, connected timber sections to gain and use advantages of each used material – lightweight, structural, thermal storage and insulation, ecological and economic benefits – to name the most important ones. The development of timber-wood lightweight concrete composites systems will lead to a new generation of polyvalent multi-material building components. By using renewable resources, waste products of the forest industry, and manufactured wood products, this technology provides statically and energy-efficient components for low-energy constructions. Such products support rapid-assembly construction methods, which use prefabricated dry elements to increase the efficiency of the construction. Wood-based alternatives to conventional concrete or masonry construction also open opportunities to reduce the carbon emissions.
Within several research projects and with the aim to optimize energy efficiency and ecological characteristics of structural building components the Department of Structural Design and Timber Engineering (ITI) at the Vienna University of Technology (VUT) developed several wood-based composite systems, which combine timber products with other conventional building materials and components. As a representative example for these developments, the application of wood lightweight concrete composites illustrates the extent of interrelationships in the development of complex system solutions when focusing on the increase of resource efficiency. The environmental assessment shows the ecological advantages of the developed concept compared to conventional concrete elements and underlines the potential for further developments. Assessment of structural wood-based wood lightweight concrete composites are illustrated in this paper.
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy simulation program EnergyPlus, the energy efficiency of this emerging building type was evaluated and compared with a light metal frame building system (currently viable construction type for this height based on the U.S. building code). A sensitivity analysis was also conducted to study the impact of different weather and internal load conditions on building energy performances. It was concluded that efficiency of CLT envelope is high for heating energy savings, but its energy performance efficiency can be greatly affected by other factors including weather, internal loading, and HVAC control.
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
This guide was developed by FPInnovations and its partners to assist in the design and construction of durable and energy-efficient wood-frame buildings in Alberta. The Province adopted the National Energy Code for Buildings 2011, as of November 1, 2016, in order to comply with the energy-efficiency requirements for large buildings (Part 3). It is now also possible, with new building regulations, to build wood structures with a maximum of six storeys or 18 m height in Alberta. This guide aims to provide solutions for the building envelope (enclosure) of Part 3 wood buildings, particularly five- and six-storey wood-frame buildings, to meet the prescriptive thermal requirements of the new energy code. A range of wood-based exterior wall and roof assemblies are covered, based on light wood frame or mass timber, and various thermal insulation materials are discussed. Effective R-values are calculated based on typical thermal insulation values of commonly used materials. This document also covers key considerations for building envelope design to maintain long-term durability in Alberta’s varied climate.