Skip header and navigation

8 records – page 1 of 1.

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems
Author
Dewsbury, Mark
Geard, Detlev
Fay, Roger
Organization
International Building Performance Simulation Association
Year of Publication
2012
Country of Publication
China
Format
Conference Paper
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Australia
Building Code
Building Code of Australia
Carbon
Climate Change
Codes
Embodied Energy
Mass Timber
Thermal
Language
English
Conference
ASim 2012
Research Status
Complete
Notes
November 25-27, 2012, Shanghai, China
Summary
There has been no research to date exploring whether timber products can provide effective thermal capacitance in residential or commercial construction. This research is exploring the use of unique mass-timber products to provide a new form of thermal performance capacitance within the built fabric of new and existing homes. The development of mass timber products is a new paradigm in material and building science research in Australia, requiring the accounting for carbon emissions, carbon sequestration, material embodied energy and material thermal properties for this renewable resource. This paper focuses on the results from preliminary building simulation studies encompassing house energy rating simulations and a comparative analysis of embodied energy and carbon storage for a series of house plans in Australia.
Online Access
Free
Resource Link
Less detail

Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration

https://research.thinkwood.com/en/permalink/catalogue2885
Year of Publication
2021
Topic
Environmental Impact
Application
Wood Building Systems
Author
Puettmann, Maureen
Pierobon, Francesca
Ganguly, Indroneil
Gu, Hongmei
Chen, Cindy
Liang, Shaobo
Jones, Susan
Maples, Ian
Wishnie, Mark
Organization
University of Washington
Forest Products Laboratory
Portland State University
Editor
Borghi, Adriana Del
Publisher
MDPI
Year of Publication
2021
Country of Publication
United States
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Mass Timber
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Language
English
Research Status
Complete
Series
Sustainability
Summary
Manufacturing of building materials and construction of buildings make up 11% of the global greenhouse gas emission by sector. Mass timber construction has the potential to reduce greenhouse gas emissions by moving wood into buildings with designs that have traditionally been dominated by steel and concrete. The environmental impacts of mass timber buildings were compared against those of functionally equivalent conventional buildings. Three pairs of buildings were designed for the Pacific Northwest, Northeast and Southeast regions in the United States to conform to mass timber building types with 8, 12, or 18 stories. Conventional buildings constructed with concrete and steel were designed for comparisons with the mass timber buildings. Over all regions and building heights, the mass timber buildings exhibited a reduction in the embodied carbon varying between 22% and 50% compared to the concrete buildings. Embodied carbon per unit of area increased with building height as the quantity of concrete, metals, and other nonrenewable materials increased. Total embodied energy to produce, transport, and construct A1–A5 materials was higher in all mass timber buildings compared to equivalent concrete. Further research is needed to predict the long-term carbon emissions and carbon mitigation potential of mass timber buildings to conventional building materials.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber: Towards a Consistent Structural Insulated Panel for Passive Building in Belgium

https://research.thinkwood.com/en/permalink/catalogue497
Year of Publication
2014
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Léoskool, Laurent
Descamps, Thierry
Van Parys, Laurent
Trujillo, Vladimir
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Energy Performance
Environmental Impact
Keywords
Low-Energy
Embodied Energy
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Nowadays, it is possible to build zero-energy houses or even positive energy buildings. Nevertheless, many incoherencies exists if we attach importance to the embodied energy of its constructions. The present paper lays on the logic of structural insulated panel which is used in many low-energy and passive houses and go further in order to reduce the global greenhouse gases emissions. For this purpose, cross-laminated timber is used instead of oriented strand board and the insulation used is made of wood wool. The structure, the technology and the thermal aspects are discussed as well as the fire resistance in order to show if its new product is economically and technically interesting. Results show that the embodied energy can be drastically reduced compared to the structural insulated panels. A wood consumption reduction of thirty percent can also be obtained compared to the classical cross-laminated timber construction.
Online Access
Free
Resource Link
Less detail

Environmental Performances of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue1343
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Author
Fortuna, Stefano
Dalla Mora, Tiziano
Peron, Fabio
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Topic
Environmental Impact
Keywords
Concrete Glulam Framed Panel
Embodied Energy
Carbon Footprint
Cradle-to-Gate
Prefabrication
Reinforced Concrete
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
The improvement of environmental performance in building construction could be achieved by prefabrication. This study quantifies and compares the environmental impacts of a Concrete Glulam Framed Panel (CGFP): the basic configuration of this precast component consists in a Cross-Laminated Timber (CLT) frame structure supporting a thin reinforced concrete slab with an interior insulation panel and covered by finishing layers. The research investigates also alternative design of configuration with the substitution of different insulation materials in order to minimize the Embodied Energy and Carbon Footprint values. The boundary of the quantitative analysis is “cradle to gate” including the structural support system; an IMPACT 2002+ characterization methodology is employed to translate inventory flows into impacts indicators. Results present very low values for carbon footprint (60.63 kg CO2eq m-2) and the embodied energy values (919.44 MJ m-2) indicate this hybrid precast structure as a valid alternative building constructions and processes. A detailed discussion of the outputs is presented, including the comparison of the environmental performances depending on different insulation materials.
Online Access
Free
Resource Link
Less detail

A New Concrete-Glulam Prefabricated Composite Wall System: Thermal Behavior, Life Cycle Assessment and Structural Response

https://research.thinkwood.com/en/permalink/catalogue1296
Year of Publication
2018
Topic
Mechanical Properties
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Author
Boscato, Giosuè
Dalla Mora, Tiziano
Peron, Fabio
Russo, Salvatore
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Environmental Impact
Keywords
Strength
Stiffness
Concrete Glulam Framed Panel
Thermal Behaviour
Carbon Footprint
Embodied Energy
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
In a former paper by the authors [1], the elastic behavior of Cross Laminated Timber (CLT) and timber panels having periodic gaps between lateral lamellae has been analyzed. A thick plate homogenization scheme based on Finite Elements computations has been applied. The predicted behavior was in agreement with experimental results. In this paper, simplified closed-form solutions are derived in order to avoid FE modeling. Both cases of narrow gaps of CLT panels and wide gaps of innovative lightweight panels are investigated. CLT and timber panels with gaps are modeled as a space frame of beams connected with wooden blocks. The contribution of both beams and blocks to the panel’s mechanical response is taken into account, leading to closed-form expressions for predicting the panel’s stiffnesses and maximum longitudinal and rolling shear stresses. The derived closed-form solutions are in agreement with the reference FE results and they can be used for practical design purposes.
Online Access
Free
Resource Link
Less detail

Seeing the Forest and the Trees: Environmental Impacts of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2702
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Kwok, Alison
Zalusky, Hannah
Rivera, Maria Isabel
Rasmussen, Linsday
McKay, Hannah
Publisher
Taylor&Francis Online
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Greenhouse gas emissions
Embodied Carbon
Embodied Energy
Life Cycle
Language
English
Research Status
Complete
Series
Technology
Architecture + Design
Summary
With advances in wood product development and building code acceptance, mass timber structural systems have become viable alternatives to steel and concrete structural systems (Post 2015). These mass timber systems have environmental benefits, such as carbon sequestration ability and lower greenhouse gas emissions than steel and concrete systems. How can mass timber materials such as cross-laminated timber (CLT) reduce the environmental impacts of buildings, and how certain is this reduction? In order to truly answer this question, environmental impact assessments of CLT and other wood materials must first address variation and uncertainty in forest management and biogenic carbon accounting.
Online Access
Free
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Why Method Matters: Temporal, Spatial and Physical Variations in LCA and Their Impact on Choice of Structural System

https://research.thinkwood.com/en/permalink/catalogue2142
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Moncaster, Alice
Pomponi, Francesco
Symons, Katherine
Publisher
Elsevier
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Case Study
Buildings
Residential
Language
English
Research Status
Complete
Series
Energy and Buildings
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.