Skip header and navigation

2 records – page 1 of 1.

The Design of Cross-Laminated Timber Slabs with Cut-Back Glulam Rib Downstands - From Research to Live Project

https://research.thinkwood.com/en/permalink/catalogue1736
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Papastavrou, Panayiotis
Smith, Simon
Wallwork, Tristan
McRobie, Allan
Niem, Nicholas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Finite Element Modelling
Full-Scale
Embedment Depth
Reinforcement
Screws
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4809-4818
Summary
A research project was undertaken to investigate the behaviour of composite CLT slabs with glulam downstands cut back from the supports. A desk study and Finite Element Modelling (FEM) were used and evaluated on their ability to model and design such a structure, focusing on the cut back location and utilising reinforcement screws. The project included full-scale laboratory testing of a composite slab to failure with innovative data collection techniques such as Particle Image Velocimetry. A similar structural element was also used in a real construction project and the investigation gave insight towards its design. It was concluded that the embedment depth of reinforcement screws in the glulam downstand is key to the performance of the composite slab with full depth penetration advisable. FEM can give useful results for stress concentrations in the timber and a simplified design method was proposed.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bhat, Pooja
Organization
University of British Columbia
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
FFTT
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Embedment Depth
Embedment Length
Strong-column Weak-beam Failure
Cross-Section Reduction
Language
English
Research Status
Complete
Summary
This thesis fills the existing knowledge gap between detailed design and global behaviour of hybrid systems through an experimental study on an innovative timber-steel hybrid system called “FFTT”. The FFTT system relies on wall panels of mass timber such as CLT for gravity and lateral load resistance and embedded steel sections for ductility under the earthquake loads. An important step towards the practical application of the FFTT system is obtaining the proof that the connections facilitate the desired ductile failure mode. The experimental investigation was carried out at the facility of FPInnovations, Vancouver. The testing program consisted of quasi-static monotonic and reverse cyclic tests on the timber-steel hybrid system with different configurations. The two beam profiles, wide flange I-sections and hollow rectangular sections were tested. The interaction between the steel beams and CLT panels and the effect of the embedment depth, cross-section reduction and embedment length were closely examined. The study demonstrated that when using an appropriate steel section, the desired ‘Strong Column–Weak Beam’ failure mechanism was initiated and excessive wood crushing was avoided. While wide-flange I-sections were stiffer and stronger, the hollow sections displayed better post-yield behaviour with higher energy dissipation capacity through several cycles of deformation under cyclic loads. The out-of-plane buckling at the point of yielding was the major setback of the embedment of wide-flange I-sections. This research served as a precursor for providing design guidance for the FFTT system as one option for tall wood buildings in high seismic regions.
Online Access
Free
Resource Link
Less detail