Skip header and navigation

4 records – page 1 of 1.

Behaviour of FRP Retrofitted Glued-Laminated (Glulam) Beams Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1550
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Retrofitted
Static Loads
Dynamic Loads
GFRP
Damage
Predictive Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1207-1214
Summary
Preliminary results from an experimental program investigating the behaviour of retrofitted glulam beams subjected to static and dynamic loads are presented in this paper. The effect of glass fibre-reinforced-polymer (GFRP) laminates applied on the tension side was investigated under both static and dynamic loading as a potential retrofit on undamaged specimens. Furthermore, previously damaged beams were restored by applying GFRP confinement to the damaged region. The experimental results showed that the capacity of the retrofitted beams was improved significantly and the restored beams attained a significant level of their original dynamic capacity. Future work involves the development of a material predictive model that can account for the high-strain rate effects as well as investigating more retrofit options.
Online Access
Free
Resource Link
Less detail

Behaviour of Glued-Laminated (Glulam) Beams and Columns Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1549
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Blast Loads
Static Loads
Dynamic Loads
Dynamic Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1199-1206
Summary
This paper presents preliminary results from an experimental program investigating the dynamic behaviour of glulam beams and columns subjected to simulated blast loads. A total of eight glulam beams and columns were tested destructively under static and dynamic loads. Based on the dynamic tests conducted on the beams, an increase in strength under dynamic loading, relative to that measured under the static loading, was observed. A material predictive model that accounts for high strain-rate effects is developed. The experimental displacement-time histories were reasonably well predicted through a single-degree-of-freedom approach which used the proposed resistance model as input.
Online Access
Free
Resource Link
Less detail

Demonstration of a Cost-Effective CLT Panel Capable of Resisting DOS/DOD Design Basis Threats – Phase I

https://research.thinkwood.com/en/permalink/catalogue2784
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Karagozian & Case
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Blast Tests
Blast Loading
Dynamic Loads
Quasi-Static Loading
Bond Integrity
Research Status
In Progress
Summary
Karagozian & Case (K&C), a science and engineering firm based in California, is seeking to develop and execute a two-phase testing program to demonstrate the blast-resistance capability of cross laminated timber (CLT). K&C’s proposal outlines a plan that will use full-size reinforced CLT panels to demonstrate that panels are capable of resisting severe blast, ballistic, and forced entry threats while still maintaining their bond line integrity under both quasi-static and dynamic loading conditions. If the proposed effort is successful, blast testing on reinforced CLT panels will be pursued in a follow-on second phase.
Less detail

Development of Steel-Wood Hybrid Systems for Buildings Under Dynamic Loads

https://research.thinkwood.com/en/permalink/catalogue845
Year of Publication
2012
Topic
Seismic
Design and Systems
Serviceability
Application
Hybrid Building Systems
Author
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
Chile
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Serviceability
Keywords
Dynamic Loads
Timber-Steel Hybrid
Strength
Language
English
Conference
International Specialty Conference on Behaviour of Steel Structures in Seismic Areas
Research Status
Complete
Notes
January 9-11, 2012, Santiago, Chile
Summary
A steel-wood hybrid system furnishes not only aesthetically pleasing and sustainable hybrid structures but is superior in seismic applications due to the light weight, high resistance, and adjustable ductility. Such hybrid structural systems are not covered by any material and structural design standards that hinder the general implementation. For light structures, a builder’s guide to hybrid wood and steel connection details already exists in North America. Despite the obvious advantages, however, today’s applications of steel-wood hybrid structures have been limited. Rare hybrid buildings with a concentrically braced frame used for lateral load resistance with a glulam timber floor slab have been built as prototypes. The use of glulam floor slab led to a substantially reduced self-weight, compared with the reinforced concrete slab option. The lighter structure behaves superior in seismic events and has made wind loads the governing design case. The next generation steel-wood hybrid structures should optimally utilize each material. This paper describes a research program of the next generation wood-steel hybrid structures should optimally utilize each material. In detail the following development issues will be addressed: innovative hybrid steel-wood building systems, technical tools to predict structural responses of hybrid systems, design principles underpinning the definition of key code provisions related to strength and serviceability performance of hybrid buildings. It will be highlighted that potential structural problems at the design stage result from material incompatibilities. The constitutive properties of each material, hybrid-material, and joint properties reported in the literature will be used, or supplemented by findings from experimental work.
Online Access
Free
Resource Link
Less detail