Skip header and navigation

28 records – page 2 of 3.

Glulam from Acetylated Radiata Pine

https://research.thinkwood.com/en/permalink/catalogue956
Year of Publication
2013
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
General Application

High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue1918
Year of Publication
2019
Topic
Energy Performance
Material
Timber (unspecified)
Application
Walls
Wood Building Systems
Roofs
Rooms
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
Application
Walls
Wood Building Systems
Roofs
Rooms
Topic
Energy Performance
Keywords
Mid-Rise
Durability
Vertical Movement
Indoor Environmental Conditions
Language
English
Research Status
Complete
Summary
This monitoring study aims to generate field performance data from a highly energy efficient building in the west coast climate as part of FPInnovations’ efforts to assist the building sector in developing durable and energy efficient wood-based buildings. A six-storey mixed-use building, with five storeys of wood-frame residential construction on top of concrete commercial space was completed in early 2018 in the City of Vancouver. It was designed to meet the Passive House standard. The instrumentation aimed to gather field data related to the indoor environment, building envelope moisture performance, and vertical movement to address the most critical concerns among practitioners for such buildings.
Online Access
Free
Resource Link
Less detail

High-Rise Wood Building Enclosures

https://research.thinkwood.com/en/permalink/catalogue2349
Year of Publication
2016
Topic
Moisture
Energy Performance
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope

Hygrothermal Properties of Cross Laminated Timber and Moisture Response of Wood at High Relative Humidity

https://research.thinkwood.com/en/permalink/catalogue12
Year of Publication
2012
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
General Application

Illustrated Guide R30+ Effective Vaulted & Flat Roofs

https://research.thinkwood.com/en/permalink/catalogue2348
Year of Publication
2019
Topic
Moisture
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Roofs
Author
Marleau, Christopher
Higgins, James
Ricketts, Lorne
Roppel, Patrick
Publisher
BC Housing Research Centre
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Roofs
Topic
Moisture
Energy Performance
Design and Systems
Keywords
Vaulted Roofs
Water-Shedding Roofs
Flat Waterproof Membrane Roofs
Thermal Performance
Moisture Management
Air Leakage
Durability
Language
English
Research Status
Complete
Summary
This Illustrated Guide consolidates information on vaulted water-shedding roofs and flat waterproof membrane roofs that are capable of meeting R-30 or greater effective thermal performance when used on low- and mid-rise wood-frame buildings. The guide is intended to be an industry, utility, and government resource with respect to meeting this thermal performance level, while not compromising other aspects of building enclosure performance, including moisture management, air leakage, and durability.
Online Access
Free
Resource Link
Less detail

Influence of Specimen Size on Accelerated Weathering of Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2499
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
General Application

Mechanical Properties of Cross-Laminated Timber Accounting for Non-Bonded Edges and Additional Cracks

https://research.thinkwood.com/en/permalink/catalogue1665
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Nairn, John
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Cracks
Thermal Expansion
Moisture Expansion
Durability
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3742-3749
Summary
Cross-laminated timber (or CLT) must be recognized as a “precracked” wood composite material where the non-bonded edges within each layer act as cracks in the structure. Furthermore, differential shrinkage between the layers of installed CLT panels subjected to variations in moisture and temperature will result in additional cracks forming parallel to the initial precracks...
Online Access
Free
Resource Link
Less detail

Modeling the Impact of Assembly Tolerances Regarding Air Leaks on the Energy Efficiency and Durability of a Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue2365
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Martin, Ulysse
Blanchet, Pierre
Potvin, André
Publisher
North Carolina State University
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Energy Efficiency
Air Leakage
HAM Analysis
Durability Assessment
Language
English
Research Status
Complete
Series
BioResources
Summary
Air leaks have a considerable impact on the energy load and durability of buildings, particularly in cold climates. In wood construction using cross-laminated timber (CLT), air leaks are most likely to be concentrated at the joints between panels and other elements. This study used simulations of heat, air, and moisture transfers through a gap between two CLT panels causing air leakage in winter conditions under a cold climate. A real leakage occurrence was sized to validate the simulations. The aim of this work was to assess the impact on the energy loads and the durability of an air leak, as either infiltration or exfiltration, for different gap widths and relative humidity levels. The results showed that infiltrations had a greater impact on the energy load than exfiltrations but did not pose a threat to the durability, as opposed to exfiltrations. Gap sizes in CLT may vary, but the effect on the energy load was sensitive to the leakage path in the rest of the wall. As expected, a combination of winter exfiltration and a high level of interior relative humidity was particularly detrimental.
Online Access
Free
Resource Link
Less detail

Moisture Response of Wall Assemblies of Cross-Laminated Timber Construction in Cold Canadian Climates

https://research.thinkwood.com/en/permalink/catalogue143
Year of Publication
2012
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls

Ontario’s Climate Resilient Tall Wood Buildings and Structures: An Evaluation of the Impacts of Climate Change on Mass Timber/Tall Wood

https://research.thinkwood.com/en/permalink/catalogue2289
Topic
Design and Systems
Serviceability
Material
Timber (unspecified)
Application
Wood Building Systems
Organization
National Research Council Canada, Canadian Construction Materials Centre
Country of Publication
Canada
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Climate Change
Extreme Weather
Mass Timber
Tall Wood
Deterioration
Durability
Research Status
In Progress
Notes
Project contact is Philip Rizcallah.
Summary
The research conducted will provide new climatic data which takes into account certain extreme weather events being attributed to climate change to minimize and/or prevent the risk of failure of tall wood buildings and mass timber structures. The project will offer guidance on the design for durability of tall wood building enclosures and fill existing gaps in knowledge about the extent of the effects of the future climate conditions and extreme weather events (e.g. heat waves, rainfalls, wind storms, etc.) on the resistances to deterioration of building materials, air leakage, vapour diffusion, and water ingress.
Less detail

28 records – page 2 of 3.