Skip header and navigation

41 records – page 1 of 5.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Summary
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an oven with a target sample temperature of 204°C. The deformation (creep) was examined as a function of time. It was found that samples fingerjointed with melamine formaldehyde and phenol resorcinol formaldehyde adhesives had the same creep behavior as solid wood. One-component polyurethane and polyvinyl acetate adhesives could not maintain the load at the target temperature measured middepth of the sample, and several different types of creep behavior were observed before failure. This method showed that the creep performance of the onecomponent adhesives may be quite different than the performance from short-term load deformation curves collected at high temperatures. The importance of creep performance of adhesives in the fire resistance of engineered wood is discussed.
Online Access
Free
Resource Link
Less detail

Assessment of Borate-Treated Lamstock for a More Durable CLT

https://research.thinkwood.com/en/permalink/catalogue3182
Year of Publication
2022
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Organization
Washington State University
Year of Publication
2022
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Durability
Borate-Treated
Research Status
In Progress
Notes
Forest Service/USDA Wood Innovations Grants Recipient Point of Contact: Karl R. Englund Location: Pullman, Washington
Summary
The durability of wood has always limited mass adoption into many markets. With CLT, wood’s perceived ineffective performance when exposed to bio-deterioration and fire has many customers hesitant to commit to a mass timber structure. Our project will evaluate a commercial ready process to pretreat the lamstock of CLT panels with a variety of borate-based treatment options. By treating the lamstock prior to CLT fabrication, a more homogeneous treatment is realized, making a more durable panel that can be implemented in areas prone to high humidity and mitigate risks associated with durability. Our work will provide a commercial-ready solution that can be easily implemented in-line, lowering costs and not interrupting process flows or outputs.
Less detail

Assessment of Structural Performance of Accoya® Wood for Glulam Fabrication

https://research.thinkwood.com/en/permalink/catalogue1199
Year of Publication
2012
Topic
Mechanical Properties
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Crawford, David
Hairstans, Robert
Alexander, John
Bongers, Ferry
Year of Publication
2012
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Serviceability
Keywords
Durability
Long-term Performance
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Accoya® GluLam beams were specified for use as an external foundation support detail for an innovative low carbon affordable home in the Scottish Highlands. This detail was identified in collaboration with Neil Sutherland Architects (NSA) LLP where the use of Accoya® GluLam would result in enhanced performance in exposed conditions. The Accoya® GluLam provides support to the superstructure formed from offsite fabricated closed panels therefore reduced movement over time due to moisture fluctuations was identified as a key design consideration in order to ensure serviceability criteria are met. Due to the nature of Accoya® (acetylated timber) a test programme was developed to determine its mechanical properties for specification as a structural component both in isolation and in combination. In order to assess the long term performance of acetylated GluLam a number of beams are currently being monitored using in-situ monitoring equipment over a minimum period of 12 months.
Online Access
Free
Resource Link
Less detail

Assessment of Termite and Decay Damage to Mass Timber Elements in AWPA Ground Proximity and Above Ground Field Tests in Southern Mississippi

https://research.thinkwood.com/en/permalink/catalogue3236
Year of Publication
2022
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Mankowski, Mark E.
Shelton, Thomas
Kirker, Grant
Morrell, Jeffrey J.
Organization
Forest Products Laboratory
Year of Publication
2022
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Mass Panel Plywood
Ground Proximity Test
Above Ground Test
Soil Termiticide
Field Test
Durability
Decay
Termite
Conference
Proc. of 118th annual meeting of American Wood Protection Association
Research Status
Complete
Summary
The ability of soil insecticidal drenches or spray-on insecticide/fungicide treatments to protect mass timber elements was assessed using two modified AWPA ground proximity tests established in 2017 and 2019. The 2017 test evaluated 3-ply Douglas-fir cross-laminated timber using a modified AWPA Standard E26 while the 2019 test used a modified AWPA E21 protocol to evaluate 3-ply Douglas-fir or southern pine cross-laminated timber as well as Douglas-fir mass plywood panels. Both tests were installed at the Harrison Experimental Forest (Saucier, Mississippi) and will be assessed for five years. Treatments include an initial soil termiticide drench, spray-on borate at initiation, borate rods at initiation, remedial boron spray treatment two years after installation, and untreated controls. Samples were left undisturbed for one or two years and then rated for degree of termite and fungal damage. Moisture content of the test materials increased greatly over the non-disturbance period. Untreated control samples were attacked by both decay fungi and termites within the first year after test initiation. Soil termiticide treated plots showed no sign of termite attack, but decay was evident on some samples compared to non-soil termiticide treated plots. Samples treated with borates at test initiation showed limited decay or termite attack. The tests will continue to be evaluated for a period of at least 5 years or longer and serve as critical baseline data for field evaluation methods of mass timber in areas of high subterranean termite and decay pressure.
Online Access
Free
Resource Link
Less detail

Circular Economy & the Built Environment Sector in Canada

https://research.thinkwood.com/en/permalink/catalogue2805
Year of Publication
2021
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Wood Building Systems
Hybrid Building Systems
Organization
Delphi Group
SCIUS Advisory
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Wood Building Systems
Hybrid Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Circular Economy
Greenhouse gas emissions
Waste
Demolition
Design for Disassembly and Adaptibility
Design for Durability
Deconstruction
Material Recovery
Reverse Logistics
Research Status
Complete
Summary
This study on Circular Economy & the Built Environment Sector in Canada was carried out by The Delphi Group in collaboration with Scius Advisory and completed in March 2021 on behalf of Forestry Innovation Investment Ltd. (FII) in British Columbia and Natural Resources Canada (NRCan) as the co-sponsors for the research. The work identifies a broad range of current efforts across Canada and undertakes a deeper dive on design for disassembly and adaptability (DfD/A) best practices, including an analysis of the ISO Standard 20887:2020 (i.e., design for disassembly and adaptability) in line with current Canadian industry practice and market readiness.
Online Access
Free
Resource Link
Less detail

Comparison of Different Assembling Techniques Regarding Cost, Durability, and Ecology: A Survey of Multi-Layer Wooden Panel Assembly Load-Bearing Construction Elements

https://research.thinkwood.com/en/permalink/catalogue62
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Buck, Dietrich
Wang, Alice
Hagman, Olle
Gustafsson, Anders
Publisher
North Carolina State University
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Durability
Assembling Techniques
Research Status
Complete
Series
BioResources
Summary
Wood is a pure, sustainable, renewable material. The increasing use of wood for construction can improve its sustainability. There are various techniques to assemble multi-layer wooden panels into prefabricated, load-bearing construction elements. However, comparative market and economy studies are still scarce. In this study, the following assembling techniques were compared: laminating, nailing, stapling, screwing, stress laminating, doweling, dovetailing, and wood welding. The production costs, durability, and ecological considerations were presented. This study was based on reviews of published works and information gathered from 27 leading wood product manufacturing companies in six European countries. The study shows that the various techniques of assembling multi-layer wooden construction panel elements are very different. Cross laminated timber (CLT) exhibited the best results in terms of cost and durability. With regard to ecological concerns, dovetailing is the best. Taking into account both durability and ecological considerations, wooden screw-doweling is the best. These alternatives give manufacturers some freedom of choice regarding the visibility of surfaces and the efficient use of lower-quality timber. CLT is the most cost-effective, is not patented, and is a well-established option on the market today.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber—North American CLT vs. Imported Product

https://research.thinkwood.com/en/permalink/catalogue3088
Year of Publication
2020
Topic
General Information
Material
CLT (Cross-Laminated Timber)
Organization
APA
Year of Publication
2020
Format
Document
Material
CLT (Cross-Laminated Timber)
Topic
General Information
Keywords
Design Property Compatibility
Adhesive Heat Durability
Moisture Durability
Fire Performance
Research Status
Complete
Summary
Cross-laminated timber (CLT) manufactured in North America must meet stringent product standards and be certified to the ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber. This publication from APA - The Engineered Wood Association explains the key characteristics that are evaluated in certification process. When comparing North Amarican CLT to products manufactured elsewhere, it is important to recognize that products manufactured outside of North Amarica may not meet the performance expections defined in the ANSI standard.
Online Access
Free
Resource Link
Less detail

Development of a modified standard termite test for mass timber products

https://research.thinkwood.com/en/permalink/catalogue3252
Year of Publication
2022
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Franca, Tamara S.F.A.
Stokes, Elizabeth C.
Tang, Juliet D.
Organization
Mississippi State University
Forest Products Laboratory
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Subterranean Termites
Laboratory Assay
Wood Durability
Research Status
Complete
Series
Wood and Fiber Science
Summary
US manufacturers are looking to expand the use of cross-laminated timber (CLT) panels into the North American market, including states located in the southeast where termites are important pests. However, there is no current assessment method for determining CLT vulnerability to the highly destructive native termites found in many states across the United States. The impact of damage by these termites is of particularly high interest in areas with suitable climate to their proliferation, such as the southeastern United States. This study evaluated durability of CLT panels and developed a laboratory assay to test susceptibility of this product to termites. Untreated CLT suffered mass losses of up to 5.8% in testing with an average visual rating of 7.2, indicating a moderate to severe attack with 10-30% of the cross section of the product affected by termite intrusion. Recommendations were developed for the inclusion of modifications presented in standardized testing protocols and will be presented to standards organizations. The proposed method may also be applied to evaluate termite resistance of other mass lumber products such as laminated veneer lumber and Glulam.
Online Access
Free
Resource Link
Less detail

Development of a Slab-on-Girder Wood-Concrete Composite Highway Bridge

https://research.thinkwood.com/en/permalink/catalogue1421
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Lehan, Andrew
Organization
University of Toronto
Year of Publication
2012
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
Ultra-High-Performance Fibre-Reinforced Concrete
Girder
Post-Tensioning
Prefabrication
Durability
Span-to-Depth Ratio
Research Status
Complete
Summary
This thesis examines the development of a superstructure for a slab-on-girder wood-concrete composite highway bridge. Wood-concrete composite bridges have existed since the 1930's. Historically, they have been limited to spans of less than 10 m. Renewed research interest over the past two decades has shown great potential for longer span capabilities. Through composite action and suitable detailing, improvements in strength, stiffness, and durability can be achieved versus conventional wood bridges. The bridge makes use of a slender ultra-high performance fibre-reinforced concrete (UHPFRC) deck made partially-composite in longitudinal bending with glued-laminated wood girders. Longitudinal external unbonded post-tensioning is utilized to increase span capabilities. Prefabrication using double-T modules minimizes the need for cast-in-place concrete on-site. Durability is realized through the highly impermeable deck slab that protects the girders from moisture. Results show that the system can span up to 30 m while achieving span-to-depth ratios equivalent or better than competing slab-on-girder bridges.
Online Access
Free
Resource Link
Less detail

Development Of CLT Products with Improved Fire Performance

https://research.thinkwood.com/en/permalink/catalogue2598
Year of Publication
2020
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Author
He, Guangbo
Feng, Martin
Roussiere, Fabrice
Organization
FPInnovations
Year of Publication
2020
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Fire
Keywords
Fire Resistance
Adhesives
Bond Durability
Bonding
Treated Wood
Research Status
Complete
Summary
The fire resistance of cross-laminated timber (CLT) could be improved by treating the lamina with fire retardants. The major issues with this technology are the reduced bondability of the treated lamina with commercial adhesives. This study assessed several surface preparation methods that could improve the bondability and bond durability of fire-retardant treated wood with two commercial adhesives. Four surface preparation methods, including moisture/heat/pressure, surface planing, surface chemical treatment, and surface plasma treatment were assessed for their impact on the bondability and bond durability of lodgepole pine lamina. The block shear test results indicated that all surface preparation methods were somewhat effective in improving bond performance of fire-retardant treated wood compared to the untreated control wood samples, depending on the types of fire retardants and wood adhesives applied in the treatment process and bonding process. The selection of surface preparation, fire retardant, and wood adhesive should be considered interactively to obtain the best bond properties and fire performance. It may be possible to effectively bond the treated lamina with PUR adhesive without any additional surface preparation for the fire retardant used in the treatment at FPInnovations.
Online Access
Free
Resource Link
Less detail

41 records – page 1 of 5.