Skip header and navigation

32 records – page 1 of 4.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Language
English
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Online Access
Free
Resource Link
Less detail

Assessment of Structural Performance of Accoya® Wood for Glulam Fabrication

https://research.thinkwood.com/en/permalink/catalogue1199
Year of Publication
2012
Topic
Mechanical Properties
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Crawford, David
Hairstans, Robert
Alexander, John
Bongers, Ferry
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Serviceability
Keywords
Durability
Long-term Performance
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Online Access
Free
Resource Link
Less detail

Comparison of Different Assembling Techniques Regarding Cost, Durability, and Ecology: A Survey of Multi-Layer Wooden Panel Assembly Load-Bearing Construction Elements

https://research.thinkwood.com/en/permalink/catalogue62
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Buck, Dietrich
Wang, Alice
Hagman, Olle
Gustafsson, Anders
Publisher
North Carolina State University
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Durability
Assembling Techniques
Language
English
Research Status
Complete
Series
BioResources
Online Access
Free
Resource Link
Less detail

Development of a Slab-on-Girder Wood-Concrete Composite Highway Bridge

https://research.thinkwood.com/en/permalink/catalogue1421
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Development Of CLT Products with Improved Fire Performance

https://research.thinkwood.com/en/permalink/catalogue2598
Year of Publication
2020
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Author
He, Guangbo
Feng, Martin
Roussiere, Fabrice
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Fire
Keywords
Fire Resistance
Adhesives
Bond Durability
Bonding
Treated Wood
Language
English
Research Status
Complete
Summary
The fire resistance of cross-laminated timber (CLT) could be improved by treating the lamina with fire retardants. The major issues with this technology are the reduced bondability of the treated lamina with commercial adhesives. This study assessed several surface preparation methods that could improve the bondability and bond durability of fire-retardant treated wood with two commercial adhesives. Four surface preparation methods, including moisture/heat/pressure, surface planing, surface chemical treatment, and surface plasma treatment were assessed for their impact on the bondability and bond durability of lodgepole pine lamina. The block shear test results indicated that all surface preparation methods were somewhat effective in improving bond performance of fire-retardant treated wood compared to the untreated control wood samples, depending on the types of fire retardants and wood adhesives applied in the treatment process and bonding process. The selection of surface preparation, fire retardant, and wood adhesive should be considered interactively to obtain the best bond properties and fire performance. It may be possible to effectively bond the treated lamina with PUR adhesive without any additional surface preparation for the fire retardant used in the treatment at FPInnovations.
Online Access
Free
Resource Link
Less detail

Development of Design Values for Hem-Fir Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue116
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Pirvu, Ciprian
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Hem-Fir
Visually graded
Machine Stress Rated
Durability
Bondlines
Canada
US
Language
English
Research Status
Complete
Summary
The North American product standard for performance-rated cross-laminated timber (CLT), ANSI/APA PRG 320, was published in 2012. The standard recognizes the use of all major Canadian and US softwood species groups for CLT manufacturing and provides design...
Online Access
Free
Resource Link
Less detail

Development of Preservative-treated Southern Pine Cross-laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2566
Topic
Moisture
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Industrial Application
Organization
Mississippi State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Industrial Application
Topic
Moisture
Mechanical Properties
Keywords
Industrial Mats
Preservative Treatment
Weathering
Durability
Research Status
In Progress
Notes
Project contact is Hyungsuk Lim at Mississippi State University
Summary
This project aims to develop the preservative-treatment procedures for industrial cross-laminated timber (CLT) mats composed of southern yellow pine (SYP) lumber. The feasibility of pre- and post-treating CLT panels with an environment-friendly preservative system for ground-contact applications at an industrial scale will be evaluated from adhesion, mechanical, and durability performance aspects. As for the pre-treatment method, CLT panels will be consolidated with preservative-treated lumber adopting industrial CLT manufacturing parameters, including glue-type and clamping pressure. Alternatively, conventional CLT panels will be pressure treated with the same preservative system and dried afterward. As one of the primary focuses of the research, drying schedules which would not damage wood or adhesive layers will be determined. Also, penetration and retention of the preservatives throughout the post-treated panels will be analyzed. Adhesion and mechanical performance of the treated panels will be evaluated according to industry-accepted standards. Durability performance of the treated panels will be examined through laboratory weathering and on-site field tests.
Less detail

Durability of Mass Timber Structures: a Review of the Biological Risks

https://research.thinkwood.com/en/permalink/catalogue1838
Year of Publication
2018
Topic
Environmental Impact
Serviceability
Material
CLT (Cross-Laminated Timber)

Durable Timber Bridges - Final Report and Guidelines

https://research.thinkwood.com/en/permalink/catalogue2133
Year of Publication
2017
Topic
Design and Systems
Moisture
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2771
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Author
Defo, Maurice
Lacasse, Michael
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Topic
Moisture
Keywords
Climate Change
Hygrothermal Simulations
Moisture Performance
Durability
Mold Growth Risk
Language
English
Research Status
Complete
Series
Buildings
Summary
The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of massive timber walls on the basis of results derived from hygrothermal simulations. One-dimensional simulations were run using DELPHIN 5.9.4 for 31 consecutive years of the 15 realizations of the modeled historical (1986–2016) and future (2062–2092) climates of five cities located across Canada. For all cities, water penetration in the wall assembly was assumed to be 1% wind-driven rain, and the air changes per hour in the drainage cavity was assumed to be 10. The mold growth index on the outer layer of the cross-laminated timber panel was used to compare the moisture performance for the historical and future periods. The simulation results showed that the risk of mold growth would increase in all the cities considered. However, the relative change varied from city to city. In the cities of Ottawa, Calgary and Winnipeg, the relative change in the mold growth index was higher than in the cities of Vancouver and St. John’s. For Vancouver and St. John’s, and under the assumptions used for these simulations, the risk was already higher under the historical period. This means that the mass timber walls in these two cities could not withstand a water penetration rate of 1% wind-driven rain, as used in the simulations, with a drainage cavity of 19 mm and an air changes per hour value of 10. Additional wall designs will be explored in respect to the moisture performance, and the results of these studies will be reported in a future publication. View Full-Text
Online Access
Free
Resource Link
Less detail

32 records – page 1 of 4.