Skip header and navigation

9 records – page 1 of 1.

Development of Light Prefabricated Hybrid Structures for a High-Rise Multi-Storey Building with Emphasis on Connections

https://research.thinkwood.com/en/permalink/catalogue2248
Topic
Cost
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Design and Systems
Keywords
Vibration
Fire Resistance
Seismic
Ductile
Connections
Ultra-High Performance Concrete
Prefabrication
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
Hybrid wood-concrete structures are emerging in the multi-storey wood building market, as they provide effective solutions in terms of lightness, rigidity, vibration and fire resistance (Yeoh et al., 2010, Dagenais et al., 2016). This project aims to reduce the cost of these hybrid floors by reducing the time of construction by prefabrication technology with emphasis on use. In addition, the goal is to explore the use of Ultra High Performance Fiber Composite Concrete (UHPC) to reduce the thickness of the wood slab, and also the use of ductile connections to increase the reliability of the floor (Habel and Gauvreau). 2008, Zhang and Gauvreau 2014, Auclair-Cuerrier et al 2016a). Finally, the concrete slab improves the diaphragm behavior of the floor to seismic actions.
Less detail

Development of Novel Post-Tensioned Glulam Timber Composites

https://research.thinkwood.com/en/permalink/catalogue676
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
McConnell, Emma
McPolin, Daniel
Taylor, Su
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Basalt Fiber Reinforced Polymer
Post-Tension
Four Point Bending Test
Ductile
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Timber as a primary structural material has been forced to continually evolve to keep abreast with the changing demands of the construction industry. This paper presents further research undertaken by Queen’s University Belfast to evaluate the advantages provided by the post-tensioning of timber members using novel basalt fibre reinforced polymer (BFRP) rods. Using the high strength, low density, highly durable BFRP tendons experimental investigations utilising the four-point bending method were conducted and monitored. From the experimentation it was found that there was an increase in load carrying capacity, a more favourable ductile failure mode and a further benefit of less net deflection due to the precamber induced by the post-tensioning prior to load application.
Online Access
Free
Resource Link
Less detail

Displacement Design Procedure for Cross Laminated Timber (CLT) Rocking Walls with Sacrificial Dampers

https://research.thinkwood.com/en/permalink/catalogue395
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gu, Mengzhe
Pang, Weichiang
Schiff, Scott
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Energy Dissipation
Ductile Behavior
U-Shaped Flexural Plates
Self-centering Mechanism
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the preliminary design of a rocking Cross-laminated Timber (CLT) wall using a displacement-based design procedure. The CLT wall was designed to meet three performance expectations: immediate occupancy (IO), life safety (LS), and collapse prevention (CP). Each performance expectation is defined in terms of an inter-story drift limit with a predefined non-exceedance probability at a given hazard level. U-shape flexural plates were used to connect the vertical joint between the CLT panels to obtain a ductile behavior and adequate energy dissipation during seismic motion. A design method for ensuring self-centering mechanism is also presented.
Online Access
Payment Required
Resource Link
Less detail

Ductility and Overstrength of Dowelled LVL and CLT Connections Under Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue1504
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Ottenhaus, Lisa-Mareike
Li, Minghao
Smith, Tobias
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Ductility
Overstrength
Cyclic Loading
Monotonic Loading
Dowels
Ductile Failure
Brittle Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 325-333
Summary
This paper presents an experimental study on ductility and overstrength of dowelled connections. Connection ductility and overstrength derived from monotonic testing are often used in timber connection design in the context of seismic loading, based on the assumption that these properties are similar under monotonic and cyclic loading. This assumption could possibly lead to non-conservative connection design. Therefore, it is necessary to quantify ductility and overstrength for cyclic loading and contrast them with their monotonic performance. For this purpose, monotonic and quasi-static cyclic experimental tests were performed on dowelled LVL and CLT connections. The experimental results were also compared with strength predictions from state-of-the-art analytical models in literature that were verified for ductile and brittle failure under monotonic loading. This work also allowed investigation into a generally applicable overstrength factor for push-pull loaded dowelled connections.
Online Access
Free
Resource Link
Less detail

Mechanical Behavior of Bolted Glulam Beam-to-Column Connections with Slotted-In Steel Plates Under Pure Bending

https://research.thinkwood.com/en/permalink/catalogue1503
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Wang, Mingqian
Song, Xiaobin
Gu, Xianglin
Wu, Yajie
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Connections
Mechanical Properties
Keywords
Full Scale
Bolted Connection
Beam-to-Beam
Beam-to-Column
Steel Plates
Finite Element Model
Failure Modes
Moment Resistance
Continuum Damage Mechanics
Brittle Failure
Ductile Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 309-316
Summary
In this study, five full-scale bolted glulam beam-to-beam connections with slotted-in steel plates were conducted under a third-point loading, and a three-dimensional finite element method based model was also established to investigate the failure modes and moment resistance of such connections. A material model based on the Continuum Damage Mechanics (CDM) theory was developed to predict damage evolution of wood. Different damage variables were used to consider the ductile and brittle failure modes of wood, respectively. The test results indicated that splitting and shear plug failures were the main failure modes. The numerical analysis model prediction achieved fair agreements with the test results. The research could provide the guide for the design of bolted beam-to-column connections in heavy timber structures.
Online Access
Free
Resource Link
Less detail

New Design Approach for Wood Brittle Failure Mechanisms in Timber Connections

https://research.thinkwood.com/en/permalink/catalogue317
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Year of Publication
2014
Country of Publication
New Zealand
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Joints
Fasteners
European Yield Model
New Zealand
Ductile
Brittle
Failure Mechanisms
Language
English
Conference
Australasian Structural Engineering Conference
Research Status
Complete
Notes
July 9-11, 2014, Auckland, New Zealand
Summary
Timber construction has experienced considerable progress in recent years. In such progress, apart from the implementation of new engineered timber products, the advancement of timber joints has played a significant role. The design procedures for timber connections in most design codes are based mainly on the yielding capacity of the fasteners using the European Yield Model (EYM). While the EYM theory provides accurate predictions for connections that fail in a ductile fashion, it does not take into account the failure of the connections due to the brittle rupture of wood as the consequence of fasteners group effect. Such a significant gap in the design of connections also applies to the New Zealand (NZS 3603) and Australian (AS 1720.1) timber design standards. A new design approach is presented which allows the practitioners to predict the connection capacity associated with different brittle wood failure mechanisms. An extensive testing regime has been conducted on high load-transfer capacity joints using timber rivets under longitudinal and transverse loadings on New Zealand Radiata Pine laminated veneer lumber (LVL) and glulam. The results verify the proposal and prove its reliability. A design guide was also developed which could eventually become a design clause in the next revision of the New Zealand timber design standard NZS 3603.
Online Access
Free
Resource Link
Less detail

Reinforcing Glued Laminated Timber with AB Initio Embedded Steel Sheets

https://research.thinkwood.com/en/permalink/catalogue1758
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Koj, Christoph
Trautz, Martin
Pranjic, Andrija
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Reinforcement
Steel Sheets
Joints
Ductile
Load-Bearing Behavior
Adhesives
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5049-5057
Summary
To enable high strength connections of glulam elements a new method of reinforcing the glulam with steel sheets has been developed. The steel sheets are installed ‘ab initio’ during the production process of the glulam. In the conducted series of test suitable adhesives and treatments of the steel surface have been selected and evaluated...
Online Access
Free
Resource Link
Less detail

Timber Concrete Composite Beams with Ductile Failure Modes

https://research.thinkwood.com/en/permalink/catalogue1700
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Author
Gendron, Benoit
Salenikovich, Alexander
Sorelli, Luca
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Beams
Topic
Connections
Mechanical Properties
Keywords
Shear Connectors
Push-Out Tests
Bending Tests
Elastic
Failure Modes
Slip
Flexural Behaviour
Ductile
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4368-4377
Summary
In the last 15 years timber-concrete composite (TCC) systems have gained market share around the world. To facilitate acceptance of this construction method and to set basis for building TCC bridges in the Province of Quebec, the authors conducted a test program on TCC beams with continuous shear connectors. It included push-out tests on the connection and static bending tests on single-T TCC beams with 4-m and 12-m span and on double-T beams with 4-m span. The goal was to study the elastic and post-elastic performance and failure induced by the connector, analyse the relationship between the interface slip and the flexural behav iour and compare the test results with the predictions using design and analysis methods. The tests on beams with the continuous shear connector showed that it is possible to achieve high degree of the composite action between the concrete slab and timber beam followed by plastic deformation and failure of the connector inducing a ductile performance of the beam required in bridge design. The use of linear and non-linear analysis methods allows predicting the observed structural response of the TCC beams.
Online Access
Free
Resource Link
Less detail

Timber Trusses Made of European Beech LVL

https://research.thinkwood.com/en/permalink/catalogue1527
Year of Publication
2016
Topic
Connections
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Trusses
Author
Kobel, Peter
Frangi, Andrea
Steiger, René
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Trusses
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Europe
Beech
Dowel-Type Connections
Ductile Failure
Embedment Tests
Embedment Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 667-674
Summary
This paper presents an experimental and analytical investigation on the application of laminated veneer lumber (LVL) made of European beech wood (fagus sylvatica L.) in timber truss structures. Particular focus is laid on developing improved design approaches for dowel-type connections and on promoting ductile failure behaviour, as the connections in timber trusses are generally governing the performance of the whole structure. Embedment tests were carried out in order to assess the embedment strength values for beech LVL, which are necessary to design dowel-type connections. The results showed higher values for beech LVL, as compared to estimations using existing formulas from design codes. A series of tensile connection tests showed that, using cross-layered beech LVL, ductile dowel-type connections with high load-carrying capacities can be designed, given that premature brittle failures are prevented. Lastly, tests on full truss structures confirmed that the favourable behaviour of dowel-type connections in cross-layered beech LVL can be implemented in truss systems, improving the global behaviour of the whole structural element.
Online Access
Free
Resource Link
Less detail

9 records – page 1 of 1.