Skip header and navigation

4 records – page 1 of 1.

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Maref, Wahid
Saber, Hamed
Ganapathy, Gnanamurugan
Abdulghani, Khaled
Nicholls, Mike
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Keywords
Drying Rate
Full Scale
Hygrothermal
Mid-Rise
Moisture Content
Construction Phase
Research Status
Complete
Summary
Recent research in the field of assessment of hygrothermal response has focused on either laboratory experimentation or modelling, but less work has been reported in which both aspects are combined. Such type of studies can potentially offer useful information regarding the benchmarking of models and related methods to assess hygrothermal performance of wall assemblies. This report documents the experimental results of a benchmark experiment that was designed to allow benchmarking of stud drying predicted by NRC’s an advanced hygrothermal computer model called hygIRC, when subjected to nominally steady-state environmental conditions. hygIRC uses hygrothermal properties of materials derived from tests on small-scale specimens undertaken in the laboratory. The drying rates of wall assembly featuring wet studs that result from moisture accumulated during the framing stage of a 5 or 6 storey building. The drying rate of those studs was assessed in an experiment undertaken in a controlled laboratory setting. The results were subsequently used to help benchmark hygIRC reported under separate cover.
Online Access
Free
Resource Link
Less detail

Hygrothermal Modelling Benchmark: Comparison of hygIRC Simulation Results with Full Scale Experiment Results (Report to Research Consortium for Wood and Wood-Hybrid Mid-Rise Buildings)

https://research.thinkwood.com/en/permalink/catalogue1950
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Cornick, Steven
van Reenen, David
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Keywords
Hygrothermal Models
Drying Rate
Research Status
Complete
Summary
hygIRC 1D and 2D are hygrothermal simulation models developed at NRC Construction. hygIRC 1D is a one-dimensional version of hygIRC 2D. The objective of the task described in this report was to compare the results derived from the use the hygrothermal simulation models hygIRC 1D and hygIRC 2D to the results of a laboratory experiment (conducted as part of Task 5) to measure the drying rate of a specific wall assembly when subjected to nominally steady state conditions in an environmental chamber. The intended outcome was to duplicate the laboratory results as closely as possible as a means of benchmarking the simulation models both of which were subsequently used as part of the parametric simulation task (Task 6).
Online Access
Free
Resource Link
Less detail

Monitoring Moisture Performance of Cross-Laminated Timber Building Elements during Construction

https://research.thinkwood.com/en/permalink/catalogue2102
Year of Publication
2019
Topic
Site Construction Management
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Study of Moisture Conditions in a Multi-Story Mass Timber Building through the Use of Sensors and WUFI Hygrothermal Modeling

https://research.thinkwood.com/en/permalink/catalogue1429
Year of Publication
2018
Topic
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kordziel, Steven
Organization
Colorado School of Mines
Year of Publication
2018
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Moisture
Site Construction Management
Keywords
Production
Construction
Moisture Content
Drying Rate
Hygrothermal
In Situ
Research Status
Complete
Summary
Mass timber products have shown promise as an innovative alternative to conventional framing systems for use in tall wood buildings, but this new trend in design and construction poses concerns for the long-term durability of the products. A major challenge that classically faces timber products is the threat of moisture-induced mold and decay fungi, which are a heightened concern in mass timber buildings exposed to the environment for extended duration during construction. Consequently, it is important to understand the hygric and thermal (hygrothermal) conditions that mass timber products can experience in multi-story constructions and to be able to quantify the behavior of the products for their suitable design and implementation. An eight-story mass timber building located in Portland, Oregon was chosen for this study and was instrumented for moisture content monitoring through its production, construction, and in-situ use. Record breaking precipitation levels occurred during the building’s construction and while dimension lumber and glulam products subsequently dried to acceptable levels, cross laminated timber products (CLT) dried more slowly. These measurements have an observed bias and the decay risk for the products is inconclusive. Samples of CLT used in the building were characterized for hygrothermal properties and integrated into WUFI, a simulation software, for analysis of the building. The software showed limitations for correctly simulating the behavior of CLT in isolated lab experiments and therefore a re-calibration was performed for accurate simulation. Preliminary on-site simulation results provide a decent approximation of observed data despite its high variance, but drying rate predicted by the program is lower than what was measured.
Online Access
Free
Resource Link
Less detail