Skip header and navigation

12 records – page 1 of 2.

Design Equations for Embedment Strength of Wood for Threaded Fasteners in the Canadian Timber Design Code

https://research.thinkwood.com/en/permalink/catalogue281
Year of Publication
2014
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Kennedy, Shawn
Salenikovich, Alexander
Munoz, Williams
Mohammad, Mohammad
Sattler, Derek
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Keywords
Dowel Type Fastener
Lateral Resistance
Yielding Resistance
Embedment Strength
Canada
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Canadian standard for engineering design in wood (CSA O86) adopted the European yield model for calculations of the lateral resistance of connections with dowel-type fasteners. This model takes into account the yielding resistance of the fastener, the assembly's geometry and the embedment strength of wood. The latter is considered a function of the relative density of wood and diameter of the fastener. The purpose of this study is to verify the significance of these variables as applied to the embedment strength for threaded dowel-type fasteners of diameters 6.4 mm and greater in Canadian glulam products. The importance of this research is justified by the growing interest in the use of large-diameter threaded fasteners in heavy timber and hybrid structures of high load-bearing capacity. Based on the results of 960 tests, a new design model for the embedment strength is proposed for potential implementation in CSA O86 standard and the impact of such a change is presented.
Online Access
Free
Resource Link
Less detail

Design of Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1936
Year of Publication
2018
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Material
Timber-Concrete Composite

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Dowelled Timber Connections with Internal Members of Densified Veneer Wood and Fibre-Reinforced Polymer Dowels

https://research.thinkwood.com/en/permalink/catalogue1498
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Author
Palma, Pedro
Kobel, Peter
Minor, Alexander
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Timber-to-Timber
Densified Veneer Wood
Fibre-Reinforced Polymer
Dowel Type Fastener
Embedment Tests
Bending Test
Shear Test
Full Scale
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 236-243
Summary
The mechanical behaviour of timber-to-timber connections with internal panels of densified veneer wood (DVW) and fibre-reinforced polymer (FRP) dowels was experimentally assessed and a design method, based on EN 1995-1-1, was developed. Embedment tests on DVW plates and bending/shear tests on FRP dowels were performed to characterise these components, followed by full-scale tests of connections assembled with these materials. The results show that these connections exhibit a mechanical behaviour compatible with structural applications, regarding both load-carrying capacity and ductility. The proposed design model is based on EN 1995-1-1’s expressions for connections with dowel-type fasteners and gives good predictions of the experimental load-carrying capacities.
Online Access
Free
Resource Link
Less detail

Experimental Tests on a Dowel-Type Timber Connection and Validation of Numerical Models

https://research.thinkwood.com/en/permalink/catalogue2897
Year of Publication
2017
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Solarino, Fabio
Giresini, Linda
Chang, Wen-Shao
Huang, Haoyu
Organization
University of Pisa
The University of Sheffield
Beijing University of Technology
Publisher
MDPI
Year of Publication
2017
Country of Publication
Italy
United Kingdom
China
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Keywords
Dowel Type Fastener
Rotational Stiffness
Damping
OpenSees
Language
English
Research Status
Complete
Series
Buildings
Summary
This paper examines the dynamic behaviour of timber framed buildings under wind and dynamic loads, focusing on the role of connections being experimentally tested. The main aim of this manuscript is to analyze the in-service dynamic behaviour of a semi-rigid moment-resisting dowel-type connection between timber beam and column. For this purpose, two laboratory tests have been performed, the first on a connection and another one on a portal frame. The results are used to validate a numerical model of the simple portal frame, analyzed in OpenSees. The obtained relationships are also discussed and compared with Eurocode rules. The main result is that the joint stiffness is calculated through the Eurocode (EC) formulation underestimates the experimental one. A mutual agreement is obtained between the numerical model, validated from the experimental stiffness value for the connections, and the experimental results on the portal frame.
Online Access
Free
Resource Link
Less detail

Influence of Steel Properties on the Ductility of Doweled Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2789
Year of Publication
2021
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Geiser, Martin
Bergmann, M.
Follesa, Maurizio
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Ductility
Strength
Monotonic Test
Cyclic Tests
Dowel Type Fastener
Serial Yielding
Doweled Connections
Capacity Design
Strain Hardening Ratio
Steel
Seismic
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
In the seismic design of structures according to the dissipative structural behaviour, the connection ductility is crucial in order to ensure the desired level of energy dissipation of the overall structure. Therefore, in case of ductile zones composed of dowel-type fasteners arranged in series, it is important to ensure that all the fasteners can fully develop their energy dissipation capacity by plastic deformations. However, when different types of connections made of two symmetrical and serially arranged assemblies of dowel-type fasteners are tested, it often appears that only few fasteners fully work in the plastic region while most of the remaining ones exhibit very low yielding. Looking at the causes of this dysfunction, a possible explanation is due to the fact that the rules for the seismic design of dissipative zones in timber structures given in international codes and used in common practice often make reference only to the steel quality of the dowel-type fasteners specifying a minimum tensile strength or sometime, like is the case of the current version of Eurocode 8, only to maximum values of the dowel-type fastener diameter and of the thickness of the connected timber or wood-based members. Also, the research conducted so far about the ductile behaviour of serially arranged connections was not focused on the post-elastic properties of steel. However, for the seismic design of ductile zones of other materials, such as for example is the case of reinforced concrete walls, post-elastic characteristics of steel are required for the reinforcing bars, in order to achieve the desired dissipative behaviour. Inspired by this fact, timber connections composed of serially arranged dowels made of steel grades with different hardening ratio and elongation at maximum tensile stress were fabricated and tested. The purpose of this work is to understand if the use of steel with significant post-elastic properties may help to solve the problem of limited yielding in serially arranged dowel-type connections. The tested specimens were composed of two symmetrical timber members made of Glulam and LVL connected to two 6 mm thick slotted-in steel plates by means of 9 steel dowels with a diameter of 6.0 mm, which were subjected to monotonic and cyclic tests carried out by implementing dowels made of steel with favourable post-elastic properties. The results showed that the simultaneous yielding of two serially arranged dowelled assemblies is possible, although not fully. Moreover, assuming as reference the steel grade with the lowest post-elastic properties, the connection ductility and strength measured through monotonic and cyclic tests increased by about 30% for the steel grades with the highest hardening ratio and elongation at maximum tensile stress, whereas the displacement at maximum strength was about five times higher. In addition, it was found that confinement of the timber members and shaping of holes were crucial in order to avoid undesired and premature brittle failures and to increase the connection strength and ductility. The results obtained may be useful in order to bring a reassessment of the code requirements regarding the steel properties of ductile connections as well as of certain principles of dimensioning and detailing.
Online Access
Free
Resource Link
Less detail

Long-term Load—Deformation Behaviour of Timber-Concrete Joints

https://research.thinkwood.com/en/permalink/catalogue2525
Year of Publication
2012
Topic
Mechanical Properties
Application
Wood Building Systems
Author
Van de Kuilen, Jan-Willem
Dias, Alfredo
Publisher
ICE Publishing
Year of Publication
2012
Format
Conference Paper
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Timber Joints
Dowel Type Fastener
Timber-to-Timber
Timber-to-Concrete
Creep
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Structures and Buildings
Online Access
Free
Resource Link
Less detail

Pilot Study of a High Capacity Ductile Seismic Holdown for Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2409
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

12 records – page 1 of 2.