Skip header and navigation

38 records – page 1 of 4.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Bending Capacity of Orthogonal and Parallel Glulam T-section Beams

https://research.thinkwood.com/en/permalink/catalogue2476
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Author
Wang, Jiejun
Yang, Tao
Ning, Fan
Rao, Zhenyu
Publisher
Eastern Macedonia and Thrace Institute of Technology (EMaTTech)
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Topic
Mechanical Properties
Keywords
Bearing Capacity
Stiffness
Integrity
Strain
Deflection
Ultimate Bearing Capacity
Shear Strength
Finite Element Model
Displacement
Failure Mechanism
Ductility
Research Status
Complete
Series
Journal of Engineering Science and Technology Review
Online Access
Free
Resource Link
Less detail

Climate mitigation by energy and material substitution of wood products has an expiry date

https://research.thinkwood.com/en/permalink/catalogue2951
Year of Publication
2021
Topic
Environmental Impact
Application
Wood Building Systems
Author
Brunet-Navarro, Pau
Jochheim, Hubert
Cardellini, Giuseppe
Richter, Klaus
Muys, Bart
Organization
Universitat Politècnica de València
University of Munich
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Wood Product Model
Carbon Stock Change
Substitution
Sequestration
Dynamic Substitution Factor
Displacement Factor
Research Status
Complete
Series
Journal of Cleaner Production
Summary
The expected increased share of renewables due to the ongoing energy transition may reduce the estimated potential mitigation effect of wood. Here, we estimated the climate change mitigation effect for five scenarios of wood products use in Europe applying dynamic substitution factors embracing a future energy mix with an increasing share of renewables in accordance with the emission reductions necessary to achieve the Paris Agreement targets. Our innovative modelling approach also included the elimination of eternal recycling loops, the inclusion of more realistic wood use cascading scenarios, and adoption of a more realistic marginal (ceteris paribus) substitution approach. Results show that the mitigation effect derived from material substitution is 33% lower in 2030 than previously predicted, and even 96% lower in 2100, showing its expiry date by the end of the century. Nevertheless, the mitigation effect of wood product use, in addition to mitigation by forests, may represent 3.3% of the European emission reduction targets by 2030.
Online Access
Free
Resource Link
Less detail

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

Damage Assessment of Connections used in Cross-Laminated Timber Subject to Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue225
Year of Publication
2014
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Karacabeyli, Erol
Popovski, Marjan
Stiemer, Siegfried
Tesfamariam, Solomon
Publisher
American Society of Civil Engineers
Year of Publication
2014
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Fasteners
Damage Index (DI) Method
Brackets
Load Displacement
Hysteretic
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Notes
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000528
Summary
Cross-laminated timber (CLT) products are gaining popularity in the North American market and are being used in midrise wood buildings, in particular, in shearwall applications. Shearwalls provide resistance to lateral loads such as wind and earthquake loads, and therefore it is important to gain a better understanding of the behavior of CLT shearwall systems during earthquake events. This paper is focused on the seismic performance of connections between CLT shearwall panels and the foundation. CLT panels are very stiff and energy dissipation is accomplished by the connections. A literature review on previous research work related to damage prediction and assessment for wood frame structures was performed. Furthermore, a test program was conducted to investigate the performance of CLT connections subjected to simulated earthquake loads. Two different brackets in combination with five types of fasteners were tested under monotonic and cyclic loading protocols. In total, 98 connection tests were conducted and the monotonic load-displacement curves and hysteretic loops were obtained. In this paper, an energy-based cumulative damage assessment model was calibrated with the CLT connection test data. Finally, a correlation between the damage index and physical damage is provided.
Online Access
Free
Resource Link
Less detail

Development and Testing of an Alternative Dissipative Posttensioned Rocking Timber Wall with Boundary Columns

https://research.thinkwood.com/en/permalink/catalogue1884
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Frames
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Publisher
American Society of Civil Engineers
Year of Publication
2016
Format
Journal Article
Application
Frames
Walls
Topic
Seismic
Design and Systems
Keywords
Pres-Lam
Prestress
Post-Tensioning
Displacement
Seismic Performance
Column-Wall-Column
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The unbonded post-tensioned rocking and dissipative technology was first developed as the main outcome of the PRESSS (PREcast Seismic Structural Systems) Program in US. After the first developments and significant refinement, the technology was extended to steel and, more recently, timber structures. The timber version, referred to as Pres-Lam (Prestressed laminated) system can be either implemented for timber walls (single or coupled) or frames or combination of the above, with unbonded post-tensioning and supplemental dissipation devices. In unbonded post-tensioned dissipative wall systems a combination of re-centering capacity and energy dissipation leads to a “controlled rocking” mechanism which develops a gap opening at the wall base. This generates an uplift displacement which is transferred to the floor diaphragm. This vertical displacement incompatibility can represent a potential issue if the connection detailing between floor and lateral resisting system is not designed properly. The same issue can be mitigated by adopting an alternative configuration of the rocking/dissipative wall system, based on the use of a column-wall-column post-tensioned connection. This concept, originally proposed for precast concrete walls and referred to as PreWEC (Prestressed Wall with End Column), has been extended and adapted to posttensioned timber structures and validated through experimental testing. The paper presents the design, detailing and experimental testing of a two-thirds scale wall specimen of this alternative configuration. Different wall configurations are considered in terms of post-tensioning initial force as well as dissipation devices layout. The experimental results confirm the excellent seismic performance of the system with the possibility to adopt multiple alternative configurations.
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The applicability of the Direct Displacement-Based Design (DBD) procedure is strictly related to a priori evaluation of the design displacement and the matching Equivalent Viscous Damping (EVD) of the structure. In this paper we propose analytical models of these design parameters, at the ultimate limit state, for wooden structures built with engineered joints. Experimental results show that the plastic resources and dissipative capabilities of timber structures under earthquake conditions are ensured by the connections between the members. Therefore, the formulation of the design DBD parameters is based on the mechanical model of the single connector and assumes the inelastic deformation of the structure to be concentrated at the joints. The expected non-linear response of the connections can be either ductile or brittle. However, through an appropriate choice of the geometry and strength characteristics of the materials, in the design process we can control the expected ductile behavior of joints.
Online Access
Free
Resource Link
Less detail

Direct Displacement Design of Tall CLT Building with Deformable Diaphragms

https://research.thinkwood.com/en/permalink/catalogue1650
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bolvardi, Vahab
Pei, Shiling
van de Lindt, John
Dolan, James
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Inter-Story Isolation
Displacement-Based Design
Simulation
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3506-3514
Summary
In order to cope with the speed of urbanization around the world especially in areas of high seismicity, researchers and engineers have always been investigating cost-effective building systems with high seismic performance. Cross Laminated Timber (CLT) is a wood based material that is suitable for tall building construction. However, the current CLT system is prone to connection damage in strong earthquakes due to the vast majority of the system ductility resides in connections. One solution is the concept of inter-story isolation to develop a potentially resilient system that can remain damage free during strong earthquakes. A generalized displacement-based design method was developed to design an inter-story isolation system for a tall wood building based on articulated damage expectations. A12-story CLT building with one isolation layer was used to illustrate the proposed design method. The building performance was validated through numerical simulation under different seismic hazard levels.
Online Access
Free
Resource Link
Less detail

Displacement-Based Design of Reinforced Concrete Moment Resisting Frame Incorporating Cross Laminated Timber Infill and Metallic Damper Connector

https://research.thinkwood.com/en/permalink/catalogue1266
Year of Publication
2018
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Madheswaran, Jayanthan
Organization
University of British Columbia
Year of Publication
2018
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Connections
Keywords
Displacement-Based Design
Reinforced Concrete
Metallic Damper Connections
Abaqus
Finite Element Model
Research Status
Complete
Summary
This thesis discusses the development of a new innovative reinforced concrete hybrid structure. The hybrid structure consists of reinforced concrete frame incorporated with Cross Laminated Timber (CLT) and metallic damper connections. The seismic design of this proposed system was carried out with the displacement-based design framework and the design was successfully verified. First, this study focused to numerically model the conventional metallic (steel slit) damper and validated with the experimental result using the Abaqus finite element program. Then, to minimize the drawbacks of the conventional damper specimen, a parametric study has been carried out by changing the shape parameters of the damper using the factorial design of experiments. The purpose of conducting a parametric study is to find the appropriate configuration of the damper which can perform well with the proposed hybrid system. Further, the importance of the shape parameter and their interactions in the final response was studied using the response surface method. Secondly, the proposed hybrid system with the metallic damper connection was modeled in Extended Three Dimensional Analysis of Building Systems (ETABS) and then the overall behavior of the system was investigated. In addition, a direct displacement-based design framework was developed for the seismic design of this proposed system. To verify the proposed framework, a 2D six storey hybrid structure was modeled using ETABS. Then, a nonlinear time history analysis was conducted for the modeled structure using 50 set of ground motions to evaluate its performance. The results indicate that the proposed design framework is effective in controlling the displacement of the hybrid system under seismic excitation.
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames
Author
Loss, Cristiano
Publisher
University of Trento
Year of Publication
2011
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames
Topic
Design and Systems
Seismic
Keywords
Direct Displacement-Based Design
Direct-DBD
Full-Scale
Single Family Houses
Multi-Storey
Connections
Research Status
Complete
Notes
Doctoral Thesis (PhD)
Summary
The research is aimed at developing seismic methods for the design and evaluation of the seismic vulnerability of wooden structures, using a displacement-based approach. After a brief introduction on the seismic behaviour of timber structures, the general Direct Displacement-Based Design (Direct-DBD) procedure and the state-of-the-art are presented, with clear reference to the application of the Direct-DBD method to wooden buildings. The strength of the Direct-DBD method is its ability to design structures in a manner consistent with the level of damage expected, by directly relating the response and the expected performance of the structure. The research begins with a description of the procedural aspects of the Direct-DBD method and the parameters required for its application. The research presented focuses on the formulation of a displacement-based seismic design procedure, applicable to one-storey wooden structures made with a portal system. This typology is very common in Europe and particularly in Italy. A series of analytical expressions have been developed to calculate design parameters. The required analytical Direct-DBD parameters are implemented based on the mechanical behaviour of the connections, made with metal dowel-type fasteners. The calibration and subsequent validation of design parameters use a Monte Carlo numerical simulation and outcomes obtained by tests in full-scale. After the description of the Displacement-Based method for one-storey wooden structures, a series of guidelines to extend the Direct-DBD methodology to other types and categories of timber systems are proposed. The thesis presents the case of a multi-storey wood frame construction, which is a simple extension of the glulam portal frame system. Part of this work has been done within the RELUIS Project, (REte dei Laboratori Universitari di Ingegneria Sismica), Research Line IV, which in the years between 2005 and 2008 involved several Italian universities and Italian institutes of research in the development of new seismic design methods. The Project produced the first draft of model code for the seismic design of structures based on displacement (Direct-DBD). This thesis is the background to the section of the model code developed for timber structures.
Online Access
Free
Resource Link
Less detail

38 records – page 1 of 4.