Skip header and navigation

2 records – page 1 of 1.

Design Concept for a Greened Timber Truss Bridge in City Area

https://research.thinkwood.com/en/permalink/catalogue2392
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Application
Bridges and Spans
Author
Kromoser, Benjamin
Ritt, Martin
Spitzer, Alexandra
Stangl, Rosemarie
Idam, Friedrich
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Bridges and Spans
Topic
Design and Systems
Environmental Impact
Keywords
Wooden Trusses
Timber Bridges
Timber Engineering
Greened Structures
Vertical Green
Sustainable Structural Engineering
Digital Design
Parametric Design
Automated Construction
Resource-Efficient Structural Engineering
Language
English
Research Status
Complete
Series
Sustainability
Summary
Properly designed wooden truss bridges are environmentally compatible construction systems. The sharp decline in the erection of such structures in the past decades can be led back to the great effort needed for design and production. Digital parametric design and automated prefabrication approaches allow for a substantial improvement of the efficiency of design and manufacturing processes. Thus, if combined with a constructive wood protection following traditional building techniques, highly efficient sustainable structures are the result. The present paper describes the conceptual design for a wooden truss bridge drawn up for the overpass of a two-lane street crossing the university campus of one of Vienna’s main universities. The concept includes the greening of the structure as a shading design element. After an introduction, two Austrian traditional wooden bridges representing a good and a bad example for constructive wood protection are presented, and a state of the art of the production of timber trusses and greening building structures is given as well. The third part consists of the explanation of the boundary conditions for the project. Subsequently, in the fourth part, the conceptual design, including the design concept, the digital parametric design, the optimization, and the automated prefabrication concept, as well as the potential greening concept are discussed, followed by a summary and outlook on future research.
Online Access
Free
Resource Link
Less detail

Mass Timber, Small Format: Creative Applications of Fabrication Off-cuts

https://research.thinkwood.com/en/permalink/catalogue2798
Topic
Environmental Impact
Cost
Market and Adoption
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Organization
TallWood Design Institute
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Topic
Environmental Impact
Cost
Market and Adoption
Keywords
Fabrication
Off-cuts
Cutouts
Furniture
Joinery
Open Source
Digital Design
Digital Fabrication
Research Status
In Progress
Notes
Project contacts are Linda Zimmer and Cory Olsen at the University of Oregon
Summary
During the testing and fabrication of mass timber projects a natural byproduct inevitably occurs in the form of offcuts and cutouts. In the case of new mass timber structures, the engineered wood materials are typically fabricated and prepared off site, allowing for the majority of the leftover materials to be made into useful products at the same facility already ideally set up for further digital fabrication. While the thickness of many of the spare panelized elements under investigation/production at TDI might seem excessive for smaller scale elements, the digital design and production techniques already being used allow for a fine degree of precision commensurate with furniture joinery. We propose to experiment with designing and fabricating furniture scale components and furniture prototypes as a way to reclaim these otherwise unused timber products. This project captures off cuts and remaindered materials from structural testing at TDI in both CLT and MPP panels. Our focus is the design and fabrication of freestanding furnishings (ex: stools, benches, tables, chairs) that will exploit the technologies available at the Emmerson Lab. We come at this with two perspectives: in the first, products could be made directly from the materials available; in the second, the output will act as a formwork or “jig” to facilitate construction of an entirely new prototype that could expand into additional material languages. In either case it is important to us to share digital files of prototypes as “open source” designs so that production facilities and design professionals can work together to reduce waste and/or use our designs as a springboard to customize their own pieces. In this way we address the stated program goals to expand and develop new products and building components and to foster markets for these. Our iterative approach to digital design and digital hybrids utilizes CNC/robotic fabrication and assembly and we will be testing our ideas in a design-build format.
Resource Link
Less detail