Skip header and navigation

13 records – page 1 of 2.

An Equivalent Truss Method for the Analysis of Timber Diaphragms

https://research.thinkwood.com/en/permalink/catalogue112
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2015
Country of Publication
Australia
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Design and Systems
Mechanical Properties
Keywords
Diaphragms
Equivalent Truss Method
Fasteners
Forces
Deflection
Torsion
Language
English
Conference
Pacific Conference on Earthquake Engineering
Research Status
Complete
Notes
November 6-8, 2015, Sydney, Australia
Summary
Recent years have seen more architects and clients asking for tall timber buildings. In response, an ambitious timber community has been proposing challenging plans and ideas for multi-storey commercial and residential timber buildings. While engineers have been intensively looking at gravity-load-carrying elements as well as walls, frames and cores to resist lateral loads, floor diaphragms have been largely neglected. Complex floor geometries and long span floor diaphragms create stress concentrations, high force demand and potentially large deformations. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms so structural engineers need a practical alternative to simplistic equivalent deep beam analysis or costly finite element modelling. This paper proposes an equivalent truss method capable of solving complex geometries for both light timber framing and massive timber diaphragms. Floor panels are discretized by equivalent diagonals, having the same stiffness as the panel including its fasteners. With this method the panel unit shear forces (shear flow) and therefore fastener demand, chord forces and reaction forces can be evaluated. Because panel stiffness is accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed.
Online Access
Free
Resource Link
Less detail

Design of Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue294
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2015
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Multi-Storey
Commercial
Lateral Loads
Equivalent Truss Method
Lateral Load Resisting System
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 10-12, 2015, Rotorua, New Zealand
Summary
This paper discusses the design of timber diaphragms, in response to the growing interest in multi-storey commercial timber structures, and the lack of guidance or regulations regarding the seismic design of timber diaphragms. Proper performance of floor diaphragms is required to transfer all lateral loads to the vertical systems that resist them, but design for earthquake loads can be more complex than design for wind loads. This paper confirms that the seismic design of a diaphragm is intimately linked to the seismic design of the whole building. Diaphragm failure, even if restricted to a limited diaphragm portion, can compromise the behaviour of the whole building. It is therefore necessary to design and detail diaphragms for all possible load paths and to evaluate their influence on the load distribution within the rest of the structure. It is strongly recommended that timber diaphragms be designed as elastic elements, by applying dynamic amplification and overstrength factors derived from the lateral load resisting system. This paper shows that some current design recommendations for plywood sheathing on light timber framing can be applied to massive wood diaphragms, but for more complex floor geometries an equivalent truss method is suggested. Diaphragm flexibility and displacement incompatibilities between the floor diaphragms and the lateral resisting systems also need to be accounted for.
Online Access
Free
Resource Link
Less detail

Experimental Behaviour of Diaphragms in Post-Tensioned Timber Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue95
Year of Publication
2014
Topic
Connections
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Simonetti, Michele
Carlo Ponzo, Felice
Di Cesare, Antonio
Nigro, Domenico
Pampanin, Stefano
Buchanan, Andrew
Organization
The European Association for Earthquake Engineering
Year of Publication
2014
Country of Publication
Turkey
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Seismic
Keywords
Diaphragms
Lateral Loads
Post-Tensioning
Shake Table Test
Testing
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
Floor diaphragms have an important role in the seismic behaviour of structures, as inertia forces are generated by their masses and then transferred to the lateral load resisting system. Diaphragms also link all other structural elements together and provide general stability to the structure. As with most other structural components, there is concern about damage to floor diaphragms because of displacement incompatibilities. This paper describes two different experiments on engineered timber floors connected to post-tensioned timber frames subjected to horizontal loading. First a full scale two-bay post-tensioned frame was loaded with lateral loads through a stressed-skin floor diaphragm. Different connection configurations between the floor units on either side of the central column were tested. Secondly a three dimensional, three storey post-tensioned frame building was tested on a shaking table. The diaphragm consisted of solid timber panels connected to the beams with inclined fully threaded screws. For all tested connections, the diaphragm behaviour was fully maintained throughout the testing and no damage was observed. The test results showed that careful detailing of the floor panel connections near the beam-columnjoint and the flexibility of timber elements can avoid floor damage and still guarantee diaphragm action at high level of drifts in post-tensioned timber frame buildings.
Online Access
Free
Resource Link
Less detail

Experimental Tests of Cross-Laminated Timber Floors to be Used in Timber-Steel Hybrid Structures

https://research.thinkwood.com/en/permalink/catalogue96
Year of Publication
2014
Topic
Connections
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Design and Systems
Seismic
Keywords
Diaphragms
Residential
Stiffness
Testing
Timber-Steel Hybrid
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Hybrid structural systems assembled connecting steel elements and cross-laminated timber panels (CLT) can be a valid alternative to traditional systems in the construction of residential buildings. Such systems can combine the industrialized construction technology typical of steel systems with the advantages offered by CLT panels, namely lightness and geometric stability. Moreover, CLT panels are timber-based products, and wood is recognized as an eco-friendly and eco-compatible material. In hybrid structural systems, the seismic-resistant capacity of the structure can be achieved by ensuring an adequate transmission of actions among the resistant elements, namely plain timber panels (floor and wall) and steel frame elements (beams and columns). Specifically, the interaction between the steel frame and the wood panels shall ensure both horizontal and vertical bracing to floors and walls, respectively. The work presented hereafter concerns the study of the connections to be used among the individual building components of the horizontal elements, with the aim of developing an effective collaboration among the materials, maximizing the level of prefabrication and industrialization of the final components. In particular, the preliminary results of the experimental tests carried out on full-scale steel-to-timber floor specimens, loaded by in-plane actions, will be presented.
Online Access
Free
Resource Link
Less detail

Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue71
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Organization
University of Canterbury
Year of Publication
2016
Country of Publication
New Zealand
Format
Thesis
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Lateral Loads
Multi-Storey
Equivalent Truss Method
Pres-Lam
Language
English
Research Status
Complete
Summary
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.
Online Access
Free
Resource Link
Less detail

Higher Mode Effects in Multi-Storey Timber Buildings with Varying Diaphragm Flexibility

https://research.thinkwood.com/en/permalink/catalogue1480
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Author
Moroder, Daniel
Sarti, Francesco
Pampanin, Stefano
Smith, Tobias
Buchanan, Andrew
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Topic
Seismic
Mechanical Properties
Keywords
Nonlinear Time History Analysis
Higher Mode Effects
Stiffness
Diaphragms
Inter-Story Drift
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With the increasing acceptance and popularity of multi-storey timber buildings up to 10 storeys and beyond, the influence of higher mode effects and diaphragm stiffness cannot be overlooked in design. Due to the lower stiffness of timber lateral load resisting systems compared with traditional construction materials, the effect of higher modes on the global dynamic behaviour can be more critical. The presence of flexible timber diaphragms creates additional vibration modes, which have the potential to interact with each other, increasing the seismic demand on the whole structure. This paper uses a parametric non-linear time-history analysis on a series of timber frame and wall structures with varying diaphragm flexibility to study their dynamic behaviour and to determine diaphragm forces. The analyses results showed that although higher mode effects play a significant role in the structural dynamic response, this increased demand can be successfully predicted with methods available in literature. The parametric analyses showed that the diaphragm flexibility did not significantly increase the shear and moment demand; however, stiff wall structures with flexible diaphragms experienced large inter-storey drifts measured at diaphragm midspan compared with the drift of the wall alone. As expected, the diaphragm forces observed from the time-history analyses were significantly higher than the forces derived from an equivalent static analysis, leading to a potentially unsafe design. The paper presents a simplified approach for evaluating these amplified peak inertial diaphragm forces.
Online Access
Free
Resource Link
Less detail

Hybrid CLT-Based Modular Construction Systems for Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue1901
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Wood Building Systems
Floors
Walls

In-Plane Shear Performance of Cross-laminated Timber and Cross-laminated Timber Concrete Composite Diaphragm Connection Systems

https://research.thinkwood.com/en/permalink/catalogue2241
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite

Nail and Dowel Laminated Timber Diaphragms for Seismic Regions

https://research.thinkwood.com/en/permalink/catalogue2563
Topic
Seismic
Material
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Organization
Colorado School of Mines
Country of Publication
United States
Material
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Diaphragms
Failure Load
Research Status
In Progress
Notes
Project contact is Shiling Pei at the Colorado School of Mines
Summary
Nail and Dowel Laminated Timber (NLT and DLT) are efficient technologies to build mass timber floor systems directly out of dimension lumber. It is relatively inexpensive to construct and has substantial potential to help expand the mass timber building market, particularly when the floor spans mainly in one direction. There have been multiple NLT projects constructed in the seismic region, which represents a large portion of the CLT construction market. The lateral design of NLT/DLT floor systems is currently based on very conservative assumptions (essentially equating its performance to a traditional joist-sheathing light-frame wood floor system) due to this lack of validated performance examples. This project will systematically demonstrate the potential of NLT/DLT floor systems under extreme lateral loads through component level testing and full-scale building level shake table tests. Through collaboration with manufacturers and designers (StructureCraft and Magnusson Klemencic Associates (MKA)), several full-sized NLT/DLT floor will be tested to failure in the structural engineering laboratory at Colorado State University. Based on component level test results, 2 or 3 floors of NLT/DLT diaphragms will be incorporated into a (planned) full-scale 10-story full-scale mass timber building that will be tested on the world’s largest outdoor shake table for demonstration and education/outreach.
Less detail

Nonlinear Static Seismic Response of a Building Equipped with Hybrid Cross-Laminated Timber Floor Diaphragms and Concentric X-Braced Steel Frames

https://research.thinkwood.com/en/permalink/catalogue2761
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Roncari, Andrea
Gobbi, Filippo
Loss, Cristiano
Organization
University of British Columbia
University of Trento
Publisher
MDPI
Year of Publication
2021
Country of Publication
Canada
Italy
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Seismic
Keywords
Seismic Design
Hybrid Structures
Lateral Resistance
Semi-rigid Diaphragms
Load Distribution
Seismic Performance
Pushover Analysis
Nonlinear Static Analysis
Finite Element Model
Language
English
Research Status
Complete
Series
Buildings
Summary
Simplified seismic design procedures mostly recommend the adoption of rigid floor diaphragms when forming a building’s lateral force-resisting structural system. While rigid behavior is compatible with many reinforced concrete or composite steel-concrete floor systems, the intrinsic stiffness properties of wood and ductile timber connections of timber floor slabs typically make reaching a such comparable in-plane response difficult. Codes or standards in North America widely cover wood-frame construction, with provisions given for both rigid and flexible floor diaphragms designs. Instead, research is ongoing for emerging cross-laminated-timber (CLT) and hybrid CLT-based technologies, with seismic design codification still currently limited. This paper deals with a steel-CLT-based hybrid structure built by assembling braced steel frames with CLT-steel composite floors. Preliminary investigation on the performance of a 3-story building under seismic loads is presented, with particular attention to the influence of in-plane timber diaphragms flexibility on the force distribution and lateral deformation at each story. The building complies with the Italian Building Code damage limit state and ultimate limit state design requirements by considering a moderate seismic hazard scenario. Nonlinear static analyses are performed adopting a finite-element model calibrated based on experimental data. The CLT-steel composite floor in-plane deformability shows mitigated effects on the load distribution into the bracing systems compared to the ideal rigid behavior. On the other hand, the lateral deformation always rises at least 17% and 21% on average, independently of the story and load distribution along the building’s height.
Online Access
Free
Resource Link
Less detail

13 records – page 1 of 2.