Skip header and navigation

3 records – page 1 of 1.

Failure Modes and Reinforcement Techniques for Timber Beams – State of the Art

https://research.thinkwood.com/en/permalink/catalogue11
Year of Publication
2015
Topic
Serviceability
Material
Solid-sawn Heavy Timber
Application
Beams
Author
Harte, Annette
Franke, Bettina
Franke, Steffen
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Beams
Topic
Serviceability
Keywords
Damage
Deterioration
Failure
Fasteners
Large Span
Loading
Reinforcement
Retrofit
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
Highly loaded and large span timber beams are often used for halls, public buildings or bridges. Reinforcement of beams may be required to extend the life of the structure, due to deterioration or damage to the material/product or change of use. The paper summarises methods to repair or enhance the structural performance of timber beams. The main materials/products cross sections and geometries used for timber beam are presented. Furthermore, their general failure modes are described and typical retrofitting and reinforcement techniques are given. The techniques include wood to wood replacements, use of mechanical fasteners and additional strengthening materials/products.
Online Access
Free
Resource Link
Less detail

New Bridge Inspection Approach with Joint UAV and DIC System

https://research.thinkwood.com/en/permalink/catalogue2560
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Jeong, Euiseok
Seo, Junwon
Wacker, James
Year of Publication
2020
Country of Publication
United States
Format
Conference Paper
Application
Bridges and Spans
Topic
Serviceability
Keywords
UAV
DIC
Inspection
Deterioration
Detection
Language
English
Conference
Structures Congress
Research Status
Complete
Summary
This research aims to develop a new bridge inspection approach using unmanned aerial vehicle (UAV) coupled with digital image correlation (DIC) system. The DIC system incorporating UAV images can measure displacements or strains by analyzing patterns of reference and deformed images. As part of this research, a commercially available UAV, DJI Matrice 210, was integrated with the DIC system using a 3D printed mounting plate, and the joint UAV-DIC system was utilized to inspect a timber bridge girder in the Structure Lab. Then, the UAV-DIC system inspected an existing timber slab bridge in Pipestone, Minnesota, but the system was not able to efficiently identify critical damage due to its instability caused by windy conditions. Therefore, only the UAV equipped with a gimbal camera was operated to perform the bridge inspection. A significant number of images from the UAV were used and analyzed through a conventional image analysis algorithm within ImageJ software for damage quantification. The major conclusion from this research was that the UAV-DIC system was only able to detect and quantify damage (i.e., crack) on the considered girder under almost zero ambient wind conditions, and the UAV integrated with the image analysis algorithm was capable of damage identification and quantification for the inspected bridge.
Online Access
Free
Resource Link
Less detail

Ontario’s Climate Resilient Tall Wood Buildings and Structures: An Evaluation of the Impacts of Climate Change on Mass Timber/Tall Wood

https://research.thinkwood.com/en/permalink/catalogue2289
Topic
Design and Systems
Serviceability
Application
Wood Building Systems
Organization
National Research Council Canada, Canadian Construction Materials Centre
Country of Publication
Canada
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Climate Change
Extreme Weather
Mass Timber
Tall Wood
Deterioration
Durability
Research Status
In Progress
Notes
Project contact is Philip Rizcallah.
Summary
The research conducted will provide new climatic data which takes into account certain extreme weather events being attributed to climate change to minimize and/or prevent the risk of failure of tall wood buildings and mass timber structures. The project will offer guidance on the design for durability of tall wood building enclosures and fill existing gaps in knowledge about the extent of the effects of the future climate conditions and extreme weather events (e.g. heat waves, rainfalls, wind storms, etc.) on the resistances to deterioration of building materials, air leakage, vapour diffusion, and water ingress.
Less detail