Skip header and navigation

3 records – page 1 of 1.

Design Development for a Forestry Experience Center Building Demonstrating New, Scalable, Prefabricated Mass-Timber Components

https://research.thinkwood.com/en/permalink/catalogue3180
Year of Publication
2022
Organization
World Forestry Center
Year of Publication
2022
Keywords
Prefabricated
Demonstration
Research Status
In Progress
Notes
Forest Service/USDA Wood Innovations Grants Recipient Point of Contact: Sarah Horton Location: Portland, Oregon
Summary
World Forestry Center (WFC) requests USFS funds to support the Design Development, costing, and Construction Document phases for a new Forestry Experience Center. The goal of this project is to create a demonstration site for scalable, factory-made mass timber buildings that will act as a model for building technologies that advance solutions to climate change. WFC is a 501(c)3 non-profit organization headquartered in Portland, Oregon, and located in Portland’s Washington Park, which attracts over 3 million visitors each year. Our mission is to create and inspire champions of sustainable forestry. Our programs are designed to shape a society that values and takes action in support of the economic, ecological, and social benefits of forests. The new 27,300 square-foot Forestry Experience Center will include an exhibit hall, event space, a café, office space, and a “gateway” structure that will connect Washington Park visitors to WFC, Washington Park, Forest Park, and beyond. WFC has been working with Sidewalk Labs as a design consultant to incorporate Sidewalk Labs’ prefabricated modular mass timber building elements into early conceptual design. The new building will demonstrate how these products can be adopted at scale across the construction sector for mid-rise buildings, with competitive costs on par with expectations for timber or other conventional materials, and with greater environmental and social benefits. Interactive, emotionally-resonant exhibits on forestry’s most urgent challenges will be the focal point of programming within the new Forestry Experience Center. The building itself will serve as a tool to drive a public narrative about the benefits of prefabricated mass timber construction. The design will be enhanced by interpretive elements that will connect visitors to the products and techniques employed throughout the structure and the role these innovations play in improving the health of our forests and quality of life in our communities.
Less detail

Full-Scale Mass Timber Shaft Demonstration Fire

https://research.thinkwood.com/en/permalink/catalogue3
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dagenais, Christian
Su, Joseph
Ranger, Lindsay
Muradori, Sasa
Organization
FPInnovations
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
Type X Gypsum Board
Origine
Fire Demonstration
Research Status
Complete
Summary
A full-scale demonstration dire was conducted at National Research Council Canada to show how a mass timber vertical shaft could withstand a severe fire exposure lasting at least two hours. The fire resistance tests and the demonstration fire were performed to support the approval and construction of a tall wood building in Quebec city; the building is planned to be 13 storeys which includes a 12-storey wood structure above a 1-storey concrete podium. An updated calculation methologody to determine the fire resistance of CLT is provided in Capter 8 (Fire) of the CLT Handbook.
Online Access
Free
Resource Link
Less detail

Seismic Design and Analysis of a 20-Storey Demonstration Wood Building

https://research.thinkwood.com/en/permalink/catalogue667
Year of Publication
2015
Topic
Design and Systems
Seismic
Application
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying Hei
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nonlinear time history analysis
Demonstration Building
Finite Element Model
Wood-Steel
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the seismic design and analysis of a 20-storey demonstration wood building, which was conducted as a part of the NEWBuildS tall wood building design project. A hybrid lateral load resisting system was chosen for the building. The system consisted of shear walls and a shear core, both made of structural composite lumber, connected with dowel-type connections and heavy-duty HSK (wood-steel-composite) system. The core and the shear walls were linked with horizontal steel beams at each floor. The wood-based panel-to-panel interface was designed to be the main energy dissipating mechanism of the system. A detailed finite element model of this building was developed and non-linear time history analyses were performed using 10 earthquake motions. The results showed that the seismic response of the 20-storey demonstration building met the various design criteria and the design details are appropriate.
Online Access
Payment Required
Resource Link
Less detail