Skip header and navigation

3 records – page 1 of 1.

Bonding Performance of Adhesive Systems for Cross-Laminated Timber Treated with Micronized Copper Azole Type C (MCA-C)

https://research.thinkwood.com/en/permalink/catalogue2200
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Lim, Hyungsuk
Tripathi, Sachin
Tang, Juliet
Publisher
ScienceDirect
Year of Publication
2020
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Preservatives
Micronized Copper Azole-Type C
Bonding Performance
Delamination Tests
Block Shear Tests
Adhesives
Block Shear Strength
Wood Failure Percentage
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
The feasibility of manufacturing cross-laminated timber (CLT) from southern yellow pine (United States grown) treated with micronized copper azole type C (MCA-C) preservative was evaluated. Lumber (2x6 visually graded no. 2 boards) was treated to two retention levels (1.0 and 2.4 kg/m3 ), planed to a thickness of 35 mm, and assembled along with an untreated control group using three adhesive systems following product specifications: melamine formaldehyde (MF), resorcinol formaldehyde (RF), and one-component polyurethane (PUR). Block shear and delamination tests were conducted to examine the bonding performance in accordance with ASTM D905 and ASTM D2559 Standards, respectively. One-way analysis of variance and Kruskal-Wallis H test were conducted to evaluate the effects of preservative retention and adhesive type on block shear strength (BSS) and wood failure percentage (WFP). Regardless of adhesive type, the 1.0 kg/m3 retention treatment significantly lowered BSS compared to the untreated control. CLT composed of the laminations treated at 2.4 kg/m3 maintained BSS when PUR and RF were used but not MF. The average WFP of each CLT configuration ranged from 89% to 99%. The untreated CLT specimens did not experience any delamination under accelerated weathering cycles. The delamination rates of the treated specimens assembled using MF and RF increased with the preservative retention level, while PUR provided delamination rates less than 1% to the laminations treated at both levels. These combined data suggest that, under the conditions tested, PUR provided overall better bonding performance than MF and RF for MCA-C treated wood.
Online Access
Free
Resource Link
Less detail

The Evaluation of Panel Bond Quality and Durability of Hem-Fir Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1377
Year of Publication
2018
Material
CLT (Cross-Laminated Timber)
Author
Wang, Brad
Wei, Peixing
Gao, Zizhen
Dai, Chunping
Publisher
Springer Berlin Heidelberg
Year of Publication
2018
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Keywords
North America
Manufacturing
Hem-Fir
Bond Quality
Durability
Delamination Tests
Block Shear Tests
One-Component Polyurethane
Emulsion Polymer Isocyanate
Applied Pressure
Wood Failure Percentage
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
To better use the second-growth wood resources in value-added applications, this work addressed the manufacturing aspects of cross-laminated timber (CLT) products from western hemlock (Tsuga heterophylla (Raf.) Sarg) and amabilis fir (Abies amabilis (Dougl.) Forbes) (or hem-fir) harvested from coastal British Columbia, Canada. Small CLT billets (nominal 610 mm×610 mm) were made to examine CLT bond quality and durability through block shear and delamination tests. Two types of adhesives, single-component polyurethane (PUR) and emulsion polymer isocyanate (EPI) and two critical applied pressure parameters (0.28 and 0.83 MPa) were adopted to manufacture hem-fir CLT. It was found that the adhesive type and applied pressure significantly affected wood failure percentage (WFP) and delamination of hem-fir CLT. When PUR adhesive was used, CLT made at 0.83 MPa pressure yielded significantly higher WFP and lower delamination than that made at 0.28 MPa pressure. The results demonstrated that despite the fact that hem-fir lumber is not particularly specified in the current North American CLT standard, it could be used for manufacturing CLT with the required panel bond quality.
Online Access
Free
Resource Link
Less detail

Mechanical Properties of Beech CLT

https://research.thinkwood.com/en/permalink/catalogue1526
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franke, Steffen
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Beech
Strength
Stiffness
Delamination Tests
Rolling Shear Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 660-666
Summary
The use of relatively new constructions products like Cross laminated timber (CLT) is increasing significantly. It is planned to extend the production of CLT by producing them out of beech or of beech and spruce in combination as hybrid product. The objective is to provide high performing materials which compensate weak points in soft wood products. In order to use and implement the product, the mechanical behaviour of a CLT plate of beech were investigated. The potential of beech is shown in terms of known strength values. Experimental tests for the evaluation of the strength and stiffness values for beech CLT for different situations as well as delamination tests were performed. Failure cases of the mechanical tests are presented and discussed where the rolling shear failure was in major focus for the discussion.
Online Access
Free
Resource Link
Less detail