The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale...
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension...
In the presented paper, results of theoretical and experimental investigation of timber-concrete composite members with adhesive connection are described. For the timber part of composite beams Cross Laminated Timber and for concrete part lightweight concrete was used. For the composite connection special adhesive to bounding wet...
With the introduction of 5 and 6-storey wood structures into the National Building Code of Canada 2015, it is important that guidance be provided to engineers to ensure that a reasonable design approach can be sought in the design of taller wood structures. The purpose of this technical paper is to compare various methods for calculating building...
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...