Skip header and navigation

44 records – page 1 of 5.

Advanced Topics in Seismic Analysis and Design of Mid-Rise Wood-Frame Structures

https://research.thinkwood.com/en/permalink/catalogue1773
Year of Publication
2016
Topic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Wang, Jasmine
Karacabeyli, Erol
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Mid-Rise
Dynamic Analysis
Deflection
Diaphragm
National Building Code of Canada
Capacity-Based Design
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5343-5351
Summary
The following topics in the field of seismic analysis and design of mid-rise (5- and 6-storey) wood-frame buildings are included in this paper: Determination of the building period, linear dynamic analysis of wood-frame structures, deflections of stacked multi-storey shearwalls, diaphragm classification, capacity-based design for woodframe...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Language
English
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

An Equivalent Truss Method for the Analysis of Timber Diaphragms

https://research.thinkwood.com/en/permalink/catalogue112
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2015
Country of Publication
Australia
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Design and Systems
Mechanical Properties
Keywords
Diaphragms
Equivalent Truss Method
Fasteners
Forces
Deflection
Torsion
Language
English
Conference
Pacific Conference on Earthquake Engineering
Research Status
Complete
Notes
November 6-8, 2015, Sydney, Australia
Summary
Recent years have seen more architects and clients asking for tall timber buildings. In response, an ambitious timber community has been proposing challenging plans and ideas for multi-storey commercial and residential timber buildings. While engineers have been intensively looking at gravity-load-carrying elements as well as walls, frames and cores to resist lateral loads, floor diaphragms have been largely neglected. Complex floor geometries and long span floor diaphragms create stress concentrations, high force demand and potentially large deformations. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms so structural engineers need a practical alternative to simplistic equivalent deep beam analysis or costly finite element modelling. This paper proposes an equivalent truss method capable of solving complex geometries for both light timber framing and massive timber diaphragms. Floor panels are discretized by equivalent diagonals, having the same stiffness as the panel including its fasteners. With this method the panel unit shear forces (shear flow) and therefore fastener demand, chord forces and reaction forces can be evaluated. Because panel stiffness is accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed.
Online Access
Free
Resource Link
Less detail

An Experimental Study on Buckling Strength with Laminated Veneer Lumber of Three Wood Species

https://research.thinkwood.com/en/permalink/catalogue1575
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Kambe, Wataru
Nakamura, Madoka
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Japanese Larch
Japanese Cypress
Japanese Cedar
Compression Test
Deflection
Strain
Buckling Strength
Slenderness Ratio
Bending Deflection
Maximum Strength
Yield Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1698-1706
Summary
In the past study, we conducted compression tests with laminated veneer lumber of Japanese Larch. We observed the deflection and strain behaviour. As a result we could evaluate the bucking strength with Euler’s equation and Tetmajer’s method. For structural design we should expand the versatility of that method. Three wood species for structural members would be selected for these tests. Those were Japanese larch, Japanese cypress and Japanese cedar. For the test parameter, we set the 8types of slenderness ratio for the compression test and we conducted monotonic compression tests with pin-supported on both edges. For the mechanical properties we conducted compression tests with short column members and got yield compression for those materials. In the compression tests, we could see the bending deflection. We would get the ratio the maximum strength and yield strength for distinguish the limited slenderness ratio. As a result it was cleared that the limit slenderness ratio of these wood species was 100. And we could confirm that the Tetmajer’s method is useful for evaluation the yield strength.
Online Access
Free
Resource Link
Less detail

Application of Quasi-Brittle Material Model for Analysis of Timber Members

https://research.thinkwood.com/en/permalink/catalogue925
Year of Publication
2014
Material
Solid-sawn Heavy Timber
Author
Khorsandnia, Nima
Crews, Keith
Publisher
Taylor&Francis Online
Year of Publication
2014
Country of Publication
United Kingdom
Format
Journal Article
Material
Solid-sawn Heavy Timber
Keywords
ultimate load
Finite Element Model
Load-Deflection Response
Failure Load
Four Point Bending Test
Language
English
Research Status
Complete
Series
Australian Journal of Structural Engineering
Summary
Over the last two decades many constitutive models with different degrees of accuracy have been developed for analysis of sawn timber and engineered wood products. However, most of the existing models for analysis of timber members are not particularly practical to implement, owing to the large number of material properties (and associated testing) required for calibration of the constitutive law. In order to overcome this limitation, this paper presents details of 1D, 2D and 3D non-linear fi nite element (FE) models that take advantage of a quasi-brittle material model, requiring a minimum number of material properties to capture the load-defl ection response and failure load of timber beams under 4-point bending. In order to validate the model, four tapered timber piles with circular cross-section (two plains and two retrofi tted with steel jacket) were tested and analysed with the proposed 3D FE modelling technique; and a good correlation between experimentally observed and numerically captured ultimate load was observed. Consequently, it was concluded that the developed FE models used in conjunction with the quasi-brittle constitutive law were able to adequately capture the failure load and load-defl ection response of the fl exural timber elements.
Online Access
Free
Resource Link
Less detail

Bending Capacity of Orthogonal and Parallel Glulam T-section Beams

https://research.thinkwood.com/en/permalink/catalogue2476
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Author
Wang, Jiejun
Yang, Tao
Ning, Fan
Rao, Zhenyu
Publisher
Eastern Macedonia and Thrace Institute of Technology (EMaTTech)
Year of Publication
2020
Country of Publication
Greece
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Bridges and Spans
Topic
Mechanical Properties
Keywords
Bearing Capacity
Stiffness
Integrity
Strain
Deflection
Ultimate Bearing Capacity
Shear Strength
Finite Element Model
Displacement
Failure Mechanism
Ductility
Language
English
Research Status
Complete
Series
Journal of Engineering Science and Technology Review
ISSN
1791-2377
Online Access
Free
Resource Link
Less detail

Connection and Performance of Two-Way CLT Plates Phase II

https://research.thinkwood.com/en/permalink/catalogue2086
Year of Publication
2019
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Author
Zhang, Chao
Asselstine, Julian
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Deflection
Two-Way
Bending
Finite Element Method
Model
Language
English
Research Status
Complete
Summary
In Phase I of Developing Large Span Two Way CLT Floor System (2017-18) we studied the performance of a steel plate connection system for the minor direction of CLT plates. The connected specimens had higher stiffness and strength compared to intact members under bending. In Phase II (2018-19) we designed and tested another connector based on...
Online Access
Free
Resource Link
Less detail

Deflection of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1974
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

44 records – page 1 of 5.