Skip header and navigation

7 records – page 1 of 1.

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Summary
Cross-laminated timber has, in the last 6 years, been used for the first time to form shear walls and cores in multi-storey buildings of seven storeys or more. Such buildings can have low mass in comparison to conventional structural forms. This low mass means that, as cross-laminated timber is used for taller buildings still, their dynamic movement under wind load is likely to be a key design parameter. An understanding of dynamic lateral stiffness and damping, which has so far been insufficiently researched, will be vital to the effective design for wind-induced vibration. In this study, an ambient vibration method is used to identify the dynamic properties of a seven-storey cross-laminated timber building in situ. The random decrement method is used, along with the Ibrahim time domain method, to extract the modal properties of the structure from the acceleration measured under ambient conditions. The results show that this output-only modal analysis method can be used to extract modal information from such a building, and that information is compared with a simple structural model. Measurements on two occasions during construction show the effect of non-structural elements on the modal properties of the structure.
Online Access
Free
Resource Link
Less detail

Dynamic Characterization and Vibration Analysis of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2213
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Evaluation of Timber-Concrete Floor Performance under Occupant-Induced Vibrations using Continuous Monitoring

https://research.thinkwood.com/en/permalink/catalogue131
Year of Publication
2013
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Omenzetter, Piotr
Kohli, Varun
Desgeorges, Yohann
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Damping
Frequencies
Lightweight
Long Span
Office Buildings
Language
English
Research Status
Complete
Series
Key Engineering Materials
Summary
This paper describes the design of a system to monitor floor vibrations in an office building and an analysis of several months worth of collected data. Floors of modern office buildings are prone to occupant-induced vibrations. The contributing factors include long spans, slender and flexible designs, use of lightweight materials and low damping. As a result, resonant frequencies often fall in the range easily excited by normal footfall loading, creating potential serviceability problems due to undesirable levels of vibrations. This study investigates in-situ performance of a non-composite timber-concrete floor located in a recently constructed innovative multi-storey office building. The floor monitoring system consists of several displacement transducers to measure long-term deformations due to timber and concrete creep and three accelerometers to measure responses to walking forces, the latter being the focus of this paper. Floor response is typically complex and multimodal and the optimal accelerometer locations were decided with the help of the effective independence-driving point residue (EfI-DPR) technique. A novel approach to the EfI-DPR method proposed here uses a combinatorial search algorithm that increases the chances of obtaining the globally optimal solution. Several months worth of data collected by the monitoring system were analyzed using available industry guidelines, including ISO2631-1:1997(E), ISO10137:2007(E) and SCI Publication P354. This enabled the evaluation of the floor performance under real operating conditions.
Online Access
Free
Resource Link
Less detail

Experimental Evaluations of Material Damping in Timber Beams of Structural Dimensions

https://research.thinkwood.com/en/permalink/catalogue574
Year of Publication
2013
Topic
Acoustics and Vibration
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Labonnote, Nathalie
Rønnquist, Anders
Arne Malo, Kjell
Publisher
Springer Berlin Heidelberg
Year of Publication
2013
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Damping
Flexural Vibrations
Language
English
Research Status
Complete
Series
Wood Science and Technology
Summary
Understanding the inherent damping mechanisms of floor vibrations has become a matter of increasing importance following the development of new composite floor layouts and increased span. The present study focuses on the evaluation of material damping in timber beam specimens with dimensions that are typical of common timber floor structures. Using the impact test method, 11 solid wood beams and 11 glulam beams made out of Norway Spruce (Picea abies) were subjected to flexural vibrations. The tests involved different spans and orientations. A total of 420 material damping evaluations were performed, and the results are presented as mean values for each configuration along with important statistical indicators to quantify their reliability. The consistency of the experimental method was validated with respect to repeatability and reproducibility. General trends found an increasing damping ratio for higher modes, shorter spans, and edgewise orientations. It is concluded from the results that material damping of timber beams of structural dimensions is governed by shear deformation, which can be expressed more conveniently with respect to the specific mode shape and its derivatives.
Online Access
Free
Resource Link
Less detail

Methods for Practice-Oriented Linear Analysis in Seismic Design of Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2304
Year of Publication
2020
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Static and Dynamic Properties of Retrofitted Timber Beams Using Glass Fiber Reinforced Polymers

https://research.thinkwood.com/en/permalink/catalogue797
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Solid-sawn Heavy Timber
Application
Beams
Author
Bru, David
Baeza, Francisco Javier
Varona, Francisco
García-Barba, Javier
Ivorra, Salvador
Publisher
Springer Netherlands
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Damping Ratio
Ductility
Natural Frequency
Glass Fiber Reinforced Polymer
Pine
Reinforcement
Static Properties
Dynamic Properties
Modal Analysis
Four Point Bending Test
Bending Strength
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
A study on the static and dynamic properties of sawn timber beams reinforced with glass fiber-reinforced polymer (GFRP) is reported in this paper. The experimental program is focused on the behavior of unidirectional wooden slabs, and the main objective is to fulfill the service state limit upon vibrations using GFRP when an architectonical retrofitting project is necessary. Two different typologies of reinforcement were evaluated on pine wood beams: one applied the composite only on the lower side of the beams, while the other also covered half of the beams depth. For the dynamic characterization, the natural frequency, damping ratio, and dynamic elastic modulus were measured using two different techniques: experimental modal analysis upon the whole beams; and bandwidth method using smaller samples of the same material. The static characterization consisted on four point bending tests, where elastic modulus, bending strength and ductility were assessed. The lower composite had better ductility and bending strength. On the other hand, the U-shaped laminate showed higher stiffness but also at a higher material cost. However, it allowed some ductility, i.e. compressive plasticity, even in the presence of hidden knots. Both dynamic techniques gave similar results and were capable of measuring the structure stiffness, even if short samples were used. Finally, the changes on dynamic properties because of the GFRP did not jeopardize the dynamic performance of the reinforced timber beams.
Online Access
Free
Resource Link
Less detail

Vibration Properties of a Timber Floor Assessed in Laboratory and During Construction

https://research.thinkwood.com/en/permalink/catalogue488
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Jarnerö, Kirsi
Brandt, Anders
Olsson, Anders
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Damping Ratios
Eurocode
Mode shape
Natural Frequency
Prefabrication
Boundary Conditions
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
In the present work the change in natural frequencies, damping and mode shapes of a prefabricated timber floor element have been investigated when it was integrated into a building structure. The timber floor element was first subjected to modal testing in laboratory with ungrounded and simply supported boundary conditions, and then in situ at different stages of building construction. The first five natural frequencies, damping ratios and mode shapes of the floor element and the entire floor were extracted and analysed. It may be concluded that the major change in natural frequencies occur as the floor element is coupled to the adjacent elements and when partitions are built in the studied room, the largest effect is on those modes of vibration that largely are constrained in their movement. The in situ conditions have a great influence on the damping, which depends on the damping characteristics of the supports, but also on the fact that the floor is integrated into the building and interacts with it. There is a slight increase of damping in the floor over the different construction stages and the damping values seem to decrease with ascending mode order.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.