Skip header and navigation

4 records – page 1 of 1.

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Experimental Analysis of Wall Joints in Cross Laminated Timber Panels Requested by Cyclic Load

https://research.thinkwood.com/en/permalink/catalogue2013
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)

Static and Dynamic Properties of Retrofitted Timber Beams Using Glass Fiber Reinforced Polymers

https://research.thinkwood.com/en/permalink/catalogue797
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Solid-sawn Heavy Timber
Application
Beams
Author
Bru, David
Baeza, Francisco Javier
Varona, Francisco
García-Barba, Javier
Ivorra, Salvador
Publisher
Springer Netherlands
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Damping Ratio
Ductility
Natural Frequency
Glass Fiber Reinforced Polymer
Pine
Reinforcement
Static Properties
Dynamic Properties
Modal Analysis
Four Point Bending Test
Bending Strength
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
A study on the static and dynamic properties of sawn timber beams reinforced with glass fiber-reinforced polymer (GFRP) is reported in this paper. The experimental program is focused on the behavior of unidirectional wooden slabs, and the main objective is to fulfill the service state limit upon vibrations using GFRP when an architectonical retrofitting project is necessary. Two different typologies of reinforcement were evaluated on pine wood beams: one applied the composite only on the lower side of the beams, while the other also covered half of the beams depth. For the dynamic characterization, the natural frequency, damping ratio, and dynamic elastic modulus were measured using two different techniques: experimental modal analysis upon the whole beams; and bandwidth method using smaller samples of the same material. The static characterization consisted on four point bending tests, where elastic modulus, bending strength and ductility were assessed. The lower composite had better ductility and bending strength. On the other hand, the U-shaped laminate showed higher stiffness but also at a higher material cost. However, it allowed some ductility, i.e. compressive plasticity, even in the presence of hidden knots. Both dynamic techniques gave similar results and were capable of measuring the structure stiffness, even if short samples were used. Finally, the changes on dynamic properties because of the GFRP did not jeopardize the dynamic performance of the reinforced timber beams.
Online Access
Free
Resource Link
Less detail

Tall Cross-Laminated Timber Building: Design and Performance Session WW300 Experimental and Modeling Studies on Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue618
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Dolan, Daniel
Bordry, Vincent
Pei, Shiling
van de Lindt, John
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Damping
Multi-Story
Ductility
Cost
Fire Resistance
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Cross-laminated timber (CLT) is widely perceived as the most promising option for building high-rise wood structures due to its structural robustness and good fire resistance. While gravity load design of a tall CLT building is relatively easy to address because all CLT walls can be utilized as bearing walls, design for significant lateral loads (earthquake and wind) can be challenging due to the lack of ductility in current CLT construction methods that utilize wall panels with low aspect ratios (height to length). Keeping the wall panels at high aspect ratios can provide a more ductile response, but it will inevitably increase the material and labor costs associated with the structure. In this study, a solution to this dilemma is proposed by introducing damping and elastic restoring devices in a multi-story CLT building to achieve ductile response, while keeping the integrity of low aspect ratio walls to reduce the cost of construction and improve fire resistance. The design methodology for incorporating the response modification devices is proposed and the performance of the as-designed structure under seismic is evaluated.
Online Access
Payment Required
Resource Link
Less detail