Skip header and navigation

16 records – page 1 of 2.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Summary
Cross-laminated timber has, in the last 6 years, been used for the first time to form shear walls and cores in multi-storey buildings of seven storeys or more. Such buildings can have low mass in comparison to conventional structural forms. This low mass means that, as cross-laminated timber is used for taller buildings still, their dynamic movement under wind load is likely to be a key design parameter. An understanding of dynamic lateral stiffness and damping, which has so far been insufficiently researched, will be vital to the effective design for wind-induced vibration. In this study, an ambient vibration method is used to identify the dynamic properties of a seven-storey cross-laminated timber building in situ. The random decrement method is used, along with the Ibrahim time domain method, to extract the modal properties of the structure from the acceleration measured under ambient conditions. The results show that this output-only modal analysis method can be used to extract modal information from such a building, and that information is compared with a simple structural model. Measurements on two occasions during construction show the effect of non-structural elements on the modal properties of the structure.
Online Access
Free
Resource Link
Less detail

Case Study: An 18 Storey Tall Mass Timber Hybrid Student Residence at the University of British Columbia, Vancouver

https://research.thinkwood.com/en/permalink/catalogue2120
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Fast, Paul
Gafner, Bernhard
Jackson, Robert
Li, Jimmy
Year of Publication
2016
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Tall Wood
Mass Timber
Rolling Shear
Prefabrication
Damping
Tolerances
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
This article outlines the structural design approach used for the Brock Commons Student Residence project, an 18-storey wood building at the University of British Columbia in Vancouver, Canada. When completed in summer 2017, it will be the tallest mass timber hybrid building in the world at 53 meters high. Fast + Epp are the structural engineers, working in conjunction with Acton Ostry Architects and Hermann Kaufmann Architekten. Total project costs, inclusive of fees, permits etc. are $51.5M CAD.
Online Access
Free
Resource Link
Less detail

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Author
Labonnote, Nathalie
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Topic
Design and Systems
Keywords
Damping
Model
Panels
Spruce
Testing
Vibrations
Language
English
Research Status
Complete
Summary
Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models have been derived for predicting material damping in timber members, beams or panels, or in more complex timber structures, such as floors. Material damping is defined as damping due to intrinsic material properties, and used to be referred to as internal friction. In addition, structural damping, defined as damping due to connections and friction in-between members, has been estimated for timber floors.
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Dynamic Characterization and Vibration Analysis of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2213
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Dynamic Testing of Multi-Storey Post-Tensioned Glulam Building: Planning, Design and Numerical Analysis

https://research.thinkwood.com/en/permalink/catalogue634
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Smith, Tobias
Pampanin, Stefano
Carradine, David
Di Cesare, Antonio
Carlo Ponzo, Felice
Auletta, Gianluca
Nigro, Domenico
Simonetti, Michele
Mossucca, Antonello
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Post-Tensioned
Dissipative Steel Angles
Dynamic Testing
Damping Ratio
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The following paper describes the first stage of dynamic testing of a post-tensioned timber building to be performed in the structural laboratory of the University of Basilicata in Potenza, Italy as part of a series of experimental tests in collaboration with the University of Canterbury in Christchurch, New Zealand. During this stage of testing a 3-dimensional, 3-storey post-tensioned timber structure will be tested. The specimen is 2/3rd scale and made up of frames in both directions composed of post-tensioned timber. The specimen will be tested both with and without the addition of dissipative steel angles which are designed to yield at a certain level drift. These steel angles release energy through hysteresis during movement thus increasing damping. The following paper discusses the testing set-up and preliminary numerical predictions of the system performance. Focus will be placed on damping ratios, displacements and accelerations.
Online Access
Free
Resource Link
Less detail

Experimental Investigations of Post-Tensioned Timber Frames with Advanced Seismic Damping Systems

https://research.thinkwood.com/en/permalink/catalogue464
Year of Publication
2012
Topic
Mechanical Properties
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Smith, Tobias
Carradine, David
Di Cesare, Antonio
Carlo Ponzo, Felice
Pampanin, Stefano
Buchanan, Andrew
Nigro, Domenico
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2012
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Mechanical Properties
Seismic
Keywords
Damping
Energy Dissipation
Full Scale
Post-Tensioning
Language
English
Conference
Structures Congress 2012
Research Status
Complete
Notes
March 29-31, 2012, Chicago, Illinois, United States
Summary
This paper describes initial experimental testing to investigate feasible sources of passive damping for the seismic design of post-tensioned glue laminated timber structures. These innovative high performance structural systems extend precast concrete PRESSS technology to engineered wood structures, combining the use of post-tensioning bars or cables with large post-tensioned timber members. The combination of these two elements provides elastic recentering to the structure while the addition of damping using a specialised energy dissipation system gives the desirable `flag shaped' hysteretic response under lateral loading. Testing has been performed on a full scale beam-column joint at the University of Basilicata in Italy in a collaborative project with the University of Canterbury, New Zealand. The experimental testing uses engineered wood products, extending the use of laminated veneer lumber (LVL) structures tested in New Zealand to testing of glue laminated timber (glulam) structures in Italy. Current testing is aimed at further improvement of the system through additional energy dissipation systems.
Online Access
Payment Required
Resource Link
Less detail

Ground Motion Evaluation for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1790
Year of Publication
2016
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
GeoDesign
Year of Publication
2016
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Framework
Damping
MCE
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
This report summarizes the results of our ground motion evaluation for the proposed FRMWRK Office building to be constructed at 430 NW 10th Avenue in Portland, Oregon. Our geotechnical report for the project was submitted on November 30, 2015 (GeoDesign, 2015). The site is shown relative to surrounding features on Figure 1...
Online Access
Free
Resource Link
Less detail

16 records – page 1 of 2.