Skip header and navigation

21 records – page 1 of 3.

Behavior of Cross-Laminated Timber Diaphragm Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1288
Year of Publication
2018
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Sullivan, Kyle
Miller, Thomas
Gupta, Rakesh
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Seismic
Keywords
Seismic Force Resisting System
Monotonic Tests
Cyclic Tests
Strength
Stiffness
Shear Connections
Self-Tapping Screws
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
Monotonic and cyclic tests were carried out to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with 8 mm and 10 mm diameter self-tapping screws. The goal of this research is tocompare test values of cross-laminated timber (CLT) diaphragm connections in seismic force-resisting systems tothe design values calculated from formulas in the National Design Specification for Wood Construction (USA)and the Eurocode. Understanding and quantifying the behavior of these shear connections will provide structural engineers with increased confidence in designing these components, especially with regard to the seismic forceresisting systems. Ratios of the experimental yield strength (from the yield point on the load-deflection curve) to factored design strength were in the range of 2.1–6.1. In the ASCE 41-13 acceptance criteria analysis, the mfactors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections with a unique combination of angled and vertical screws performed exceptionally well with both high, linear elastic initial stiffness and ductile, postpeak behavior.
Online Access
Free
Resource Link
Less detail

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sullivan, Kyle
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Lateral Load Resisting System
Monotonic Tests
Cyclic Tests
Strength
Stiffness
Self-Tapping Screws
International Building Code
Language
English
Research Status
Complete
Summary
The goal of this project is to contribute to the development of design values for cross-laminated timber (CLT) diaphragms in the seismic load-resisting system for buildings. Monotonic and cyclic tests to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with common self-tapping screws were performed. Understanding and quantifying the behavior of these shear connections will aid in developing design provisions in the National Design Specification for Wood Construction and the International Building Code so structural engineers can use CLT more confidently in lateral force-resisting systems and extend the heights of wood buildings. Experimental strength-to-design strength ratios were in the range of 2.1 to 8.7. In the ASCE 41 acceptance criteria analysis, the m-factors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections, where screws were installed in withdrawal, shear, shear, and withdrawal, performed exceptionally well with both high, linear-elastic, initial stiffness, and ductile, post-peak behavior.
Online Access
Free
Resource Link
Less detail

Buildings Made of Dowel-Laminated Timber: Joint and Shear Wall Properties

https://research.thinkwood.com/en/permalink/catalogue1718
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Connections
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Author
Sandhaas, Carmen
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Seismic
Connections
Keywords
Joints
Load Carrying Capacity
Cyclic Tests
Energy Dissipation
Behaviour Factors
Numerical Models
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4589-4596
Summary
Dowel-laminated timber (DLT) elements consist of lamellae arranged side-by-side that are connected with beech dowels. Due to the glue-free DLT element layup, joints and shear walls potentially suffer from considerable reduction of stiffness and load carrying capacity as metal fasteners inserted perpendicular to the element plane may be placed in gaps between the single lamellae. Tests on typical joints showed that, depending on the fastener diameter, the remaining load carrying capacity of joints in DLT in comparison to joints in solid wood may be only 25%. Tests on DLT shear walls with different sheeting proved that the use of DLT structures as shear walls is only possible if at least one-sided sheeting is used. Cyclic tests on DLT shear walls demonstrated that the DLT construction typology has energy dissipation properties similar to traditional timber frame construction. Analogously, preliminary behaviour factors for DLT buildings evaluated with numerical models were also similar to those for timber frame buildings.
Online Access
Free
Resource Link
Less detail

Cyclic Response of Insulated Steel Angle Brackets Used for Cross-Laminated Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2765
Year of Publication
2021
Topic
Seismic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Kržan, Meta
Azinovic, Boris
Publisher
Springer
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Seismic
Acoustics and Vibration
Connections
Keywords
Angle Bracket
Sound Insulation
Insulation
Monotonic Test
Cyclic Tests
Wall-to-Floor
Stiffness
Load Bearing Capacity
Shear
Tensile
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
In cross-laminated timber (CLT) buildings, in order to reduce the disturbing transmission of sound over the flanking parts, special insulation layers are used between the CLT walls and slabs, together with insulated angle-bracket connections. However, the influence of such CLT connections and insulation layers on the seismic resistance of CLT structures has not yet been studied. In this paper, experimental investigation on CLT panels installed on insulation bedding and fastened to the CLT floor using an innovative, insulated, steel angle bracket, are presented. The novelty of the investigated angle-bracket connection is, in addition to the sound insulation, its resistance to both shear as well as uplift forces as it is intended to be used instead of traditional angle brackets and hold-down connections to simplify the construction. Therefore, monotonic and cyclic tests on the CLT wall-to-floor connections were performed in shear and tensile/compressive load direction. Specimens with and without insulation under the angle bracket and between the CLT panels were studied and compared. Tests of insulated specimens have proved that the insulation has a marginal influence on the load-bearing capacity; however, it significantly influences the stiffness characteristics. In general, the experiments have shown that the connection could also be used for seismic resistant CLT structures, although some minor improvements should be made.
Online Access
Free
Resource Link
Less detail

Determination of Seismic Performance Factors for CLT Shear Wall Systems

https://research.thinkwood.com/en/permalink/catalogue770
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Amini, M. Omar
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Line, Philip
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Angle Bracket
Cyclic Tests
US
Quasi-Static
Seismic Performance Factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
This paper presents selected results of connector testing and wall testing which were part of a Forest Products Lab-funded project undertaken at Colorado State University in an effort to determine seismic performance factors for cross laminated timber (CLT) shear walls in the United States. Archetype development, which is required as part of the process, is also discussed. Connector tests were performed on generic angle brackets which were tested under shear and uplift and performed as expected with consistent nail withdrawal observed. Quasi-static cyclic tests were conducted on CLT shear walls to systematically investigate the effects of various parameters. Boundary constraints and gravity loading were both found to have a beneficial effect on the wall performance, i.e. higher strength and deformation capacity. Specific gravity also had a significant effect on wall behaviour while CLT thickness was less influential. Higher aspect ratio panels (4:1) demonstrated lower stiffness and substantially larger deformation capacity compared to moderate aspect ratio panels (2:1). However, based on the test results there is likely a lower bound of 2:1 for aspect ratio where it ceases to have any beneficial effect on wall behaviour. This is likely due to the transition from the dominant rocking behaviour to sliding behaviour.
Online Access
Free
Resource Link
Less detail

A Dissipative Connector for CLT Buildings: Concept, Design and Testing

https://research.thinkwood.com/en/permalink/catalogue1217
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Scotta, Roberto
Marchi, Luca
Trutalli, Davide
Pozza, Luca
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Dissipative Capacity
X-bracket
Cyclic Tests
Language
English
Research Status
Complete
Series
Materials
ISSN
1996-1944
Summary
This paper deals with the conception and characterization of an innovative connection for cross-laminated timber (CLT) panels. The connection is designed to provide an adequate level of dissipative capacity to CLT structures also when realized with large horizontal panels and therefore prone to fragile shear sliding failure. The connector, named X-bracket, has been theorized and designed by means of numerical parametric analyses. Furthermore, its cyclic behavior has been verified with experimental tests and compared to that of traditional connectors. Numerical simulations of cyclic tests of different CLT walls anchored to the foundation with X-brackets were also performed to assess their improved seismic performances. Finally, the analysis of the response of a 6 m × 3 m squat wall demonstrates that the developed connection provides good ductility and dissipation capacities also to shear walls realized with a single CLT panel.
Online Access
Free
Resource Link
Less detail

Evaluation of Horizontal Shear Performance of Larch CLT Walls According to the Edge Connection Shape

https://research.thinkwood.com/en/permalink/catalogue2205
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Song, Yo-Jin
Hwan Lee, In
Hong, Soon-Il
Publisher
VUPC
Year of Publication
2019
Country of Publication
Slovakia
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Shear Performance
Shear Walls
Larch
Cyclic Tests
Half-Lap
Language
English
Research Status
Complete
Series
Wood Research
Online Access
Free
Resource Link
Less detail

Experimental Analysis of Wall Joints in Cross Laminated Timber Panels Requested by Cyclic Load

https://research.thinkwood.com/en/permalink/catalogue2013
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)

Experimental Investigation of Cross-Laminated Timber Shear Wall Under Shear Force by Using Digital Image Correlation Method

https://research.thinkwood.com/en/permalink/catalogue1369
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Kuo, Tzu-Yu
Wang, Wei-Chung
Lin, Chih-Hsien
Yang, Te-Hsin
Publisher
Springer
Year of Publication
2018
Country of Publication
Switzerland
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
ASTM
Real Scale
Taiwan
Shear Modulus
Cyclic Tests
Language
English
Conference
International Conference on Theoretical, Applied and Experimental Mechanics
Research Status
Complete
ISBN
978-3-319-91989-8
Summary
At the beginning of the 20th century, a new wood manufacturing technology, i.e. cross-laminated timber (CLT), was started. In Taiwan, the manufacturing technology of CLT has just started recently. For the sake of safety, the information of stiffness and strength of the shear wall of the CLT are essential for structural designs. In this paper, by following the method B (ISO 16670 Protocol) of ASTM standard E2126-11, shear test of a real-scale CLT shear wall was performed. The measured shear modulus and cyclic test results of the CLT shear wall were reported in this paper. By using the three-dimensional digital image correlation technique, full-field deformation information of the CLT shear wall were obtained.
Online Access
Payment Required
Resource Link
Less detail

Experimental Study on Lateral Resistance of Reinforced Glued-Laminated Timber Post and Beam Structures

https://research.thinkwood.com/en/permalink/catalogue1648
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Xiong, Haibei
Liu, Yingyang
Lam, Frank
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Seismic
Mechanical Properties
Keywords
Cyclic Tests
Full Scale
Reinforcement
Lateral Resistance
Strength
Stiffness
Energy Dissipation
Self-Tapping Screws
FRP
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3471-3478
Summary
In order to study the lateral resistance of reinforced glued-laminated timber post and beam structures, nine cyclic tests on full-scale one-storey, one-bay timber post and beam construction specimens were carried out. Two reinforcement methods (wrapping fiber reinforced polymer (FRP) and implanting self-tapping screws) and two structural systems (simple frame and knee-braced frame) were considered in the experimental tests. Based on the experimental phenomena and test results, feasibility of the reinforcement was discussed, contribution between different methods was evaluated, and the seismic performances of the specimens were studied. Results showed that both the two reinforcement methods could restrain the development of crack, and recover the strength, stiffness and energy dissipation capacity. It also showed that the lateral resistance could be improved significantly when the failed simple frame retrofitted by reinforcing the joint and adding knee-brace, and this approach can be very practical in engineering.
Online Access
Free
Resource Link
Less detail

21 records – page 1 of 3.