Skip header and navigation

34 records – page 1 of 4.

Analysis of Cost Comparison and Effects of Change Orders During Construction: Study of a Mass Timber and a Concrete Building Project

https://research.thinkwood.com/en/permalink/catalogue2730
Year of Publication
2021
Topic
Cost
Material
CLT (Cross-Laminated Timber)
Author
Ahmed, Shafayet
Arocho, Ingrid
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Keywords
Concrete Building
Cost Assessment
Change Orders
Construction
Cost Comparative Analysis
Research Status
Complete
Series
Journal of Building Engineering
Summary
In recent years, timber has been considered as an alternative source of building material because of its sustainability and design efficiency. However, the cost competitiveness of timber buildings is still under study due to the lack of available cost information. This paper presents a comprehensive cost comparative analysis of a mass timber building mainly developed with cross-laminated timber (CLT). The actual construction cost of the project is compared with the modeled cost of the same building designed as a concrete option. The result shows that the construction cost of timber building is 6.43% higher than the modeled concrete building. The study further investigated the change orders associated with the project and found that the total cost of change orders contributed 5.62% to the final construction cost of mass timber building. The study is helpful to provide insight into the construction cost of typical mass timber buildings. It also can be used as a guide for the project owners to make decisions regarding their initial investments on a mass timber project.
Online Access
Free
Resource Link
Less detail

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

CLT Feasibility Study: A Study of Alternative Construction Methods in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue1896
Year of Publication
2014
Topic
Design and Systems
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Organization
Mahlum Architects
Walsh Construction
Coughlin Porter Lundeen
Publisher
Seattle Department of Construction & Inspections (SDCI)
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Design and Systems
Cost
Keywords
Building Code
Fire Tests
Seismic
Tall Wood
Multi-Story
Cost comparison
Research Status
Complete
Summary
This study explores the use of Cross Laminated Timber (CLT) in a 10-story residential building as an alternative building method to concrete and steel construction. The study is not meant to be exhaustive, rather a preliminary investigation to test the economic viability of utilizing this new material to increase density, walkability and sustainable responsiveness in our built environment. Based on international precedent, CLT is an applicable material for low-rise, as well as mid-rise to high-rise construction and has a lighter environmental footprint than traditional concrete and steel construction systems. Cross-laminated timber is a large format solid wood panel building system originating from central Europe. As a construction system it is similar to precast concrete in which large prefabricated panels are lifted by crane and installed using either a balloon frame or platform frame system. The advantages to using CLT are many, but the main benefits include: shorter construction times, fewer skilled laborers, better tolerances and quality, safer work environment, utilization of regional, sustainable materials, and reduction of carbon footprint of buildings. As a new, unproven material in the Pacific Northwest, this study investigates the cost competitiveness of CLT versus traditional materials for “low high-rise” buildings.
Online Access
Free
Resource Link
Less detail

A comparative study between glulam and concrete columns in view of design, economy and environment

https://research.thinkwood.com/en/permalink/catalogue3134
Year of Publication
2022
Topic
Cost
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Hassan, Osama A.B.
A.A., Nour Emad
Abdulahad, Gabriel
Organization
Linköping University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Cost
Environmental Impact
Keywords
Sustainability
Eurocode
Greenhouse Gases
Cost Estimate
Research Status
Complete
Series
Case Studies in Construction Materials
Summary
In this paper, it is attempted to study possible sustainability solutions for building structures. In this context, comparisons are made between two load-bearing columns with different building materials – glued laminated timber and concrete – with regard to structural design, economic consequences and the emission of greenhouse gases. In terms of structural design, the results show that with small axial forces, glulam columns will result in smaller cross-sectional areas compared to concrete columns. However, at larger axial forces, concrete columns will result in smaller cross-sectional areas than glulam columns. An increased column length also means larger dimensions for glulam columns, but this does not always apply to concrete columns. With respect to environmental impact, it is shown that using glulam columns is the more environmentally friendly option. From an economic point of view, the cost estimates for glulam and concrete columns may vary depending on the country and the abundance of the construction material. In Sweden, a forest-rich country, it is shown that the costs for both column types are quite similar considering small axial loads. At higher axial loading, concrete is generally the cheaper alternative.
Online Access
Free
Resource Link
Less detail

Construction Cost Analysis of High-performance Multi-unit Residential Buidlings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2792
Year of Publication
2021
Topic
Cost
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Organization
Zero Emissions Building Exchange
Year of Publication
2021
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Cost
Energy Performance
Keywords
BC Energy Step Code
Net Zero Energy Ready
Mid-Rise
Passive House
Construction Cost
Research Status
Complete
Summary
Does it really cost more to build a high-performance building? Historically, this question has been addressed with theoretical studies based on varying the design of common building archetypes, but nothing beats the real thing. ZEBx, in partnership with BTY Group and seven builders from across BC, has completed a cost analysis of seven high-performance, wood-framed, mid-rise, multi-unit residential buildings that meet Step 4 of the Energy Step Code or the Passive House standard. The results of the study may surprise you!
Online Access
Free
Resource Link
Less detail

Construction Cost and Time Estimating Tool Development and Industry Outreach for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2329
Topic
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Michigan State University
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Keywords
Cost Estimation
Life Cycle Cost
As-built Cost
Web-based Tool
Research Status
In Progress
Summary
Michigan State University (MSU) will develop a construction time and cost estimating tool for the use of cross laminated timber (CLT) in commercial building construction. This responds to a significant barrier to adopting such buildings among the architecture, engineering, and construction (AEC) industry, which has been reported since 2014. Despite broad agreement that first costs (and by extension time) and life cycle costs are an important facet of CLT buildings, over one third of architects were uncertain about this topic. Nine out of ten architects also listed costs and cost information as a significant barrier. This project will expand wood products markets by addressing this significant AEC industry barrier, and as a result, encourage more designers and constructors to specify CLT in their buildings. The project includes the development of a web-based predictive cost and time tool; this is quite common during the conceptual design stage, and as such, these tools exist for steels and concrete buildings, yet very little information exists for CLT. The team will also develop up to 20 CLT building case studies, with a focus on as-built costs, life cycle costs (building maintenance, energy, and carbon), construction time, and green building certification. These cases will be used to develop continuing education training modules for designers and constructors. Finally, in an attempt to motivate current students to become more knowledgeable about CLT, MSU will sponsor a 4- and 2-year CLT construction management competition. We expect these efforts to reach over 300 designers and constructors, and up to 75 AEC students.
Less detail

Costing Analysis for Common Mass-timber Archetypes

https://research.thinkwood.com/en/permalink/catalogue2812
Topic
Cost
Design and Systems
Energy Performance
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Building Envelope
Organization
Morrison Hershield
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Building Envelope
Topic
Cost
Design and Systems
Energy Performance
Keywords
Parametric Design
Cost
Mass Timber
Building Code
BC Energy Step Code
National Energy Code of Canada for Buildings
Research Status
In Progress
Notes
Project contact is Eric Wood at Morrison Hershfield
Summary
The project develops building archetypes, cost data and energy modelling to allow users to cost out mass timber buildings from basic, code-compliant buildings to high-performing, energy-efficient, low-emitting buildings. It will help quantity surveyors, designers, and other decisionmakers undertake business-case development by clarifying cost variables associated with mass-timber construction.
Less detail

Cost, Time and Environmental Impacts of the Construction of the New NMIT Arts and Media Building

https://research.thinkwood.com/en/permalink/catalogue251
Year of Publication
2011
Topic
Cost
Design and Systems
Energy Performance
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
John, Stephen
Mulligan, Kerry
Perez, Nicolas
Love, Simon
Page, Ian
Organization
University of Canterbury
Year of Publication
2011
Format
Report
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Energy Performance
Keywords
Life Cycle Cost Study
Research Status
Complete
Summary
This report was produced by the University of Canterbury for the Ministry of Agriculture and Forestry under Expression of Interest MAF POL 0910-11665. The report covers extensive research carried out on the construction of the new Arts and Media building at Nelson Marlborough Institute of Technology in Nelson, New Zealand, between March 2010 and June 2011. The collaborative research programme was directed by the Department of Civil and Natural Resources Engineering at the University of Canterbury (UC), Christchurch. Major contributions to the research programme were made by third-party industry consultants and reported in separate documents – a copy of all the original reports is included in the Appendices.
Online Access
Free
Resource Link
Less detail

Design of an Energy-Efficient and Cost-Effective Cross Laminated Timber (CLT) House in Waikuku Beach, New Zealand

https://research.thinkwood.com/en/permalink/catalogue2364
Year of Publication
2016
Topic
Design and Systems
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bournique, Guillaume
Publisher
KTH Royal Institute of Technology
Year of Publication
2016
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Cost
Energy Performance
Keywords
Energy Efficiency
Cost-Competitive
Residential
Housing
Energy Consumption
Research Status
Complete
Summary
The Canterbury earthquakes in 2010 and 2011 caused significant damage to the Christchurch building stock. However, it is an opportunity to build more comfortable and energy efficient buildings. Previous research suggests a tendency to both under heat and spot heat, meaning that New Zealand dwellings are partly heated and winter indoor temperatures do not always meet the recommendations of the World Health Organization. Those issues are likely to be explained by design deficiency, poor thermal envelope, and limitations of heating systems. In that context, the thesis investigates the feasibility of building an energy efficient and cost-competitive house in Christchurch. Although capital costs for an energy efficient house are inevitably higher, they are balanced with lower operating costs and improved thermal comfort. The work is supported by a residential building project using Cross Laminated Timber (CLT) panels. This atypical project is compared with a typical New Zealand house (reference building), regarding both energy efficiency and costs. The current design of the CLT building is discussed according to passive design strategies, and a range of improvements for the building design is proposed. This final design proposal is determined by prioritizing investments in design options having the greatest effect on the building overall energy consumption. Building design features include windows efficiencies, insulation levels, optimized thermal mass, lighting fixture, as well as HVAC and domestic hot water systems options. The improved case for the CLT building is simulated having a total energy consumption of 4,860kWh/year, which corresponds to a remarkable 60% energy savings over the baseline. The construction cost per floor area is slightly higher for the CLT building, about 2,900$/m² against 2,500$/m² for the timber framed house. But a life cycle cost analysis shows that decreased operating costs makes the CLT house cost-competitive over its lifetime. The thesis suggests that the life cycle cost of the CLT house is 14% less than that of the reference building, while the improved CLT design reaches about 22% costs savings.
Online Access
Free
Resource Link
Less detail

Development of a Cost-Effective CLT Panel Capable of Resisting DOS/DOD Design Basis Threats

https://research.thinkwood.com/en/permalink/catalogue2582
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Organization
Karagozian & Case
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Topic
Mechanical Properties
Keywords
Ballistic Resistance
Blast Loads
Cost Effective
Research Status
In Progress
Notes
Project contact is Mark Weaver at Karagozian & Case
Summary
Buildings for the U.S. Department of State (DOS) and U.S. Department of Defense (DOD) often have to meet blast as well as forced entry / ballistic resistance (FE/BR) design requirements to mitigate the hazardous effects associated with terrorism. Historically, DOS and DOD buildings exposed to these threats have been constructed using concrete and steel. However, the emergence of cross-laminated timber (CLT) presents an opportunity to provide a sustainable building material alternative to owners and architects developing such structures. Several wood characteristics (i.e., propensity to rupture in a brittle fashion upon being overstressed, relatively low penetration resistance) serve to limit CLT’s effectiveness in resisting blast and FE/BR threats. The proposed effort seeks to address these limitations by investigating the possibility of incorporating commercial off-the-shelf (COTS) building materials into CLT panel designs in order to meet DOS/DOD blast and FE/BR design requirements. Particular emphasis will be placed on ensuring the developed panel designs are cost competitive to facilitate their inclusion in actual buildings. The project team includes an American CLT manufacturer to quickly assess the cost impacts of incorporating COTS materials into CLT panel layups. Additionally, representatives from the DOS, DOD, and an architecture firm routinely involved with the design of DOS buildings will be consulted to ensure programmatic, aesthetic, and detailing issues are considered during candidate panel design development. 
Less detail

34 records – page 1 of 4.