Skip header and navigation

67 records – page 1 of 7.

An Algorithm for Numerical Modelling of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2362
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
D'Aronco, Gabriele
Publisher
Università di Padova
Year of Publication
2015
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Connections
Panels
Model
Language
English
Research Status
Complete
Summary
Cross-laminated timber, also known as X-Lam or CLT, is well established in Europe as a construction material. Recently, implementation of X-Lam products and systems has begun in countries such as Canada, United States, Australia and New Zealand. So far, no relevant design codes for X-Lam construction were published in Europe, therefore an extensive research on the field of cross-laminated timber is being performed by research groups in Europe and overseas. Experimental test results are required for development of design methods and for verification of design models accuracy. This thesis is part of a large research project on the development of a software for the modelling of CLT structures, including analysis, calculation, design and verification of connections and panels. It was born as collaboration between Padua University and Barcelona"s CIMNE (International Centre for Numerical Methods in Engineering). The research project started with the thesis “Una procedura numerica per il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software, using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started in March 2015, consisting in extending the 2D software to a 3D one, with the severity caused by modelling in three dimensions. This phase is developed as a common project and described in this thesis and in “Pre-process for numerical analysis of Cross Laminated Timber Structures” by Alessandra Ferrandino. The final aim of the software is to enable the modelling of an X-Lam structure in the most efficient and reliable way, taking into account its peculiarities. Modelling of CLT buildings lies into properly model the connections between panels. Through the connections modelling, the final aim is to enable the check of preliminarily designed connections or to find them iteratively, starting from hypothetical or random connections. This common project develops the pre-process and analysis phases of the 3D software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for KRATOS framework have been performed. The problem type enables the user to model a CLT structure, starting from the creation of the geometry and the assignation of numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and assigning loads and boundary conditions. The user does not need to create manually the connections, as conversely needs for all commercial FEM software currently available; he just set the connection properties to the different sides of the panels. The creation of the connections is made automatically, keeping into account different typologies of connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of structures and the software architecture is planned for future developments of the postprocess phase. It can be concluded that sound bases for the pre-process and analysis phases of the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Online Access
Free
Resource Link
Less detail

Analysis of Shear Transfer and Gap Opening in Timber–Concrete Composite Members with Notched Connections

https://research.thinkwood.com/en/permalink/catalogue1399
Year of Publication
2017
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
General Application
Author
Boccadoro, Lorenzo
Steiger, René
Zweidler, Simon
Frangi, Andrea
Publisher
Springer Netherlands
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
Timber-Concrete Composite
Application
General Application
Topic
Connections
Mechanical Properties
Keywords
Notched Connections
Analytical Model
Shear Stress
Failure
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Online Access
Free
Resource Link
Less detail

Analytical Model to Evaluate the Equivalent Viscous Damping of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1893
Year of Publication
2012
Topic
Connections
Material
Timber (unspecified)
Application
Frames

Behavior of Cross-Laminated Timber Diaphragm Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1288
Year of Publication
2018
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
General Application

Bending Tests on Glulam-CLT Beams connected with Double-Sided Punched Metal Plate Fasteners and Inclined Screws

https://research.thinkwood.com/en/permalink/catalogue320
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

Connection Performance for LVL-Concrete Composite Floor System

https://research.thinkwood.com/en/permalink/catalogue292
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors

Connections for CLT Diaphragms in Steel-Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue1594
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Conventional and Novel Timber Steel Hybrid Connections: Testing, Performance and Assessment

https://research.thinkwood.com/en/permalink/catalogue187
Year of Publication
2015
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

67 records – page 1 of 7.