Cross-laminated timber, also known as X-Lam or CLT, is well established in
Europe as a construction material. Recently, implementation of X-Lam products and
systems has begun in countries such as Canada, United States, Australia and New
Zealand. So far, no relevant design codes for X-Lam construction were published in
Europe, therefore an extensive research on the field of cross-laminated timber is being
performed by research groups in Europe and overseas. Experimental test results are
required for development of design methods and for verification of design models
accuracy.
This thesis is part of a large research project on the development of a software
for the modelling of CLT structures, including analysis, calculation, design and
verification of connections and panels. It was born as collaboration between Padua
University and Barcelona"s CIMNE (International Centre for Numerical Methods in
Engineering). The research project started with the thesis “Una procedura numerica per
il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software,
using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started
in March 2015, consisting in extending the 2D software to a 3D one, with the severity
caused by modelling in three dimensions. This phase is developed as a common project
and described in this thesis and in “Pre-process for numerical analysis of Cross
Laminated Timber Structures” by Alessandra Ferrandino.
The final aim of the software is to enable the modelling of an X-Lam structure in
the most efficient and reliable way, taking into account its peculiarities. Modelling of
CLT buildings lies into properly model the connections between panels. Through the
connections modelling, the final aim is to enable the check of preliminarily designed
connections or to find them iteratively, starting from hypothetical or random
connections.
This common project develops the pre-process and analysis phases of the 3D
software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for
KRATOS framework have been performed. The problem type enables the user to model
a CLT structure, starting from the creation of the geometry and the assignation of
numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and
assigning loads and boundary conditions. The user does not need to create manually the
connections, as conversely needs for all commercial FEM software currently available;
he just set the connection properties to the different sides of the panels. The creation of
the connections is made automatically, keeping into account different typologies of
connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of
structures and the software architecture is planned for future developments of the postprocess phase.
It can be concluded that sound bases for the pre-process and analysis phases of
the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
In timber–concrete composite members with notched connections, the notches act as the shear connections between the timber and the concrete part, and have to carry the shear flow necessary for composite action. The shear transfer through the notches generates shear and tensile stresses in both parts of the composite member, which may lead to brittle failure and to an abrupt collapse of the structure. Although simplified design formulas already exist, some structural aspects are still not clear, and a reliable design model is missing. This paper summarizes current design approaches and presents analytical models to understand the shear-carrying mechanism, to estimate the shear stresses acting in the timber and concrete, and to predict failure. The analysis concentrates on three problems: the shearing-off failure of the timber close to the notch, the shear failure of the concrete, and the influence of the shear flow on the gap opening between the timber and concrete. Parts of the model calculations could be compared to experimental observations. The conclusions of this paper contribute to improving current design approaches.
The Equivalent Viscous Damping (EVD) parameter is used to simplify the dynamic problem, passing from a non-linear solution of the system to a simple linear-elastic one. In the case of Direct Displacement-Based seismic Design (DDBD) methods, the EVD value allows direct design of structures, without an iterative computational process. This paper proposes a rational analytical formula to evaluate the EVD value of timber structures with dowel-type metal fastener connections. The EVD model is developed at the ultimate limit state, as a solution of the equilibrium problem related to an inelastic configuration. For a specific joint configuration, the EVD predicted via an analytical model was compared to experimental results. The proposed EVD model was validated using non-linear dynamic analysis on a portal frame, built with dowel-type fasteners arranged in two concentric crowns.
Monotonic and cyclic tests were carried out to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with 8 mm and 10 mm diameter self-tapping screws. The goal of this research is tocompare test values of cross-laminated timber (CLT) diaphragm connections in seismic force-resisting systems tothe design values calculated from formulas in the National Design Specification for Wood Construction (USA)and the Eurocode. Understanding and quantifying the behavior of these shear connections will provide structural engineers with increased confidence in designing these components, especially with regard to the seismic forceresisting systems. Ratios of the experimental yield strength (from the yield point on the load-deflection curve) to factored design strength were in the range of 2.1–6.1. In the ASCE 41-13 acceptance criteria analysis, the mfactors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections with a unique combination of angled and vertical screws performed exceptionally well with both high, linear elastic initial stiffness and ductile, postpeak behavior.
In response to the global drive towards sustainable construction, CLT has emerged as a competitive alternative to other construction materials. CLT buildings taller than 10-storeys and CLT buildings in regions of moderate to high seismicity would be subject to higher lateral loads due to wind and earthquakes than CLT buildings which have already been completed. The lack of structural design codes and limited literature regarding the performance of CLT buildings under lateral loading are barriers to the adoption of CLT for buildings which could experience high lateral loading. Previous research into the behaviour of CLT buildings under lateral loading has involved testing of building components. These studies have generally been limited to testing wall systems and connections which replicate configurations at ground floor storeys in buildings no taller than three storeys. Consequently, to develop the understanding of the performance of multi-storey CLT buildings under lateral loading, the performance of wall systems and connections which replicate conditions of those in above ground floor storeys in buildings taller than three storeys were experimentally investigated. The testing of typical CLT connections involved testing eighteen configurations under cyclic loading in shear and tension. The results of this experimental investigation highlighted the need for capacity-based design of CLT connections to prevent brittle failure. It was found that both hold down and angle bracket connections have strength and stiffness in shear and tension and by considering the strength of the connections in both directions, more economical design of CLT buildings could be achieved. The testing of CLT wall systems involved testing three CLT wall systems with identical configurations under monotonic lateral load and constant vertical load, with vertical loads replicating gravity loads at storeys within a 10-storey CLT building. The results show that vertical load has a significant influence on wall system behaviour; varying the vertical load was found to vary the contribution of deformation mechanisms to global behaviour within the elastic region, reinforcing the need to consider connection design at each individual storey. As there are still no structural design codes for CLT buildings, the accuracy of analytical methods presented within the literature for predicting the behaviour of CLT connections and wall systems under lateral loading was assessed. It was found that the analytical methods for both connections and wall systems are highly inaccurate and do not reflect experimentally observed behaviour.
This report presents bending tests performed on composite beams made from glulam beams and cross laminated timber (CLT) panels. The composite beam, with a T-cross section, represents a section of a floor element in a multi-storey CLT construction system. The shear connections used were made either of doublesided punched metal plate fasteners, either of inclined screws, or of a combination of both fastener types. The screws are used to secure the shear connection with double-sided nail plates with respect to possible separation forces between the glulam and the CLT. An additional test with a screw glued connection was made for comparison as the upper bound case in terms of composite action. The results show the beams with double-sided nail plates (with or without screws) achieved a very high level of composite action and an overall satisfactory behaviour. Almost full composite action was achieved for the screw-glued composite beam. A detailed design example of the beam element according to the Eurocode 5 and Finnish National Annex is presented.
The popularity of cross-laminated timber (CLT) has increased significantly over recent years, with numerous low- to mid-rise buildings being constructed with CLT panels as the load-bearing structural system. Glued-in rods (GiR) have been used in the construction and retrofitting of timber structures and recently found its use in CLT elements. Embedded into the timber with structural grade adhesives, GiR enable stiff connections between timber and other structural members. Due to the complex force mechanisms occurring within these joints, there is yet to be consensus on a suitable method to predict their pull-out strength or failure mechanism. There is lack of experimental research on performance of GiR embedded into CLT. This paper examines previous research on glued-in rod connections as typically applied to solid timber and other engineered timber products. It aims to identify the factors contributing to the strength and failure modes of this connection, as well as the current models that are used for the analysis and design of glued-in rods. A series of 30 experiments were undertaken to investigate the load carrying capacity of single GiR bonded into CLT panels to identify the influence of (i) the bonded length of rod; and, (ii) the direction of the middle ply of the CLT panel on these results. The experimental results indicate that the pull-out strength is largely dictated by the embedment length.
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Cross-laminated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panels as a primary gravity force-resisting component has become relatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Seismic (SDPWS 2021) from the American Wood Council (AWC), U.S. designers have a standardized path to utilize CLT floor and roof panels as a structural diaphragm. Prior to publication of this document, projects typically had to receive approval to use CLT as a structural diaphragm on a case-by-case basis from the local Authority Having Jurisdiction (AHJ).
This paper highlights important provisions of SDPWS 2021 for CLT diaphragm design and recommendations developed by the authors in the upcoming CLT Diaphragm Design Guide, based on SDPWS 2021.