Skip header and navigation

6 records – page 1 of 1.

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Language
English
Research Status
Complete
Summary
This report begins with a discussion of the mechanisms of flame spread over combustible materials while describing the NBCC prescriptive solutions that establish the acceptable fire performance of interior finish materials. It is noted that while flame spread ratings do give an indication of the fire performance of products in building fires, the data generated are not useful as input to fire models that predict fire growth in buildings. The cone calorimeter test is then described in some detail. Basic data generated in the cone calorimeter on the time to ignition and heat release rates are shown to be fundamental properties of wood products which can be useful as input to fire models for predicting fire growth in buildings. The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Online Access
Free
Resource Link
Less detail

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Tiso, Mattia
Organization
SP Technical Research Institute of Sweden
Year of Publication
2014
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Small Scale
Cone Calorimeter
Heat Flux
Gypsum Type F
Plywood
Fire Resistance
Language
English
Research Status
Complete
Summary
Timber buildings made with Cross-laminated Timber (CLT) panels are becoming wide spread in Europe. The fire resistance of CLT panels depends upon several parameters, including the number of layers and their thickness. At the present, EN 1995-1-2:2004 does not provide specific information on the fire design of CLT panels. Several fire resistance tests of CLT panels were performed in different scales by furnace testing using the standard fire curve according to ISO 834-1:1999, however the large number of possible combination of CLT products makes testing too complicated and expensive as a tool for the verification of the fire resistance of several combinations. In this report are presented nine small-scale tests carried-out at SP Wood Technology (Technical Research Institute of Sweden). The tests consisted in specimens of CLT and massive timber exposed at a two steps of constant heat flux in a cone calorimeter (50 and 75 kW/m2). Some specimens were exposed with two different types of fire protection (gypsum plasterboard type F and plywood) and some were tested unprotected. Later, thermal simulations with the same set-up of tests were implemented on the finite element software package in Safir 2007, with the time-temperature curve given by ISO 834 as input; also the analytical calculation of the charring depth following the Eurocode 5 part 1-2 was done. The target of this thesis is to compare performed CLT furnace tests with the smallscale cone calorimeter tests carried out, the numerical results of the thermal model and the analytical results obtained.
Online Access
Free
Resource Link
Less detail

A New Approach to Classify the Degree of Combustibility of Materials

https://research.thinkwood.com/en/permalink/catalogue2257
Topic
Fire
Organization
Université Laval
Country of Publication
Canada
Topic
Fire
Keywords
Fire Safety
Combustion Properties
Heat Flux
Numerical Modeling
Cone Calorimeter Testing
Flame Spread
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval
Summary
The use of materials in a building is traditionally determined from its combustibility (via ULC S114 or ULC S135) and by its flame propagation index (via ULC S102). The ULC S102 Flame Spread Test, developed in 1943, has historically reduced risk through its method of classifying materials. However, this test does not provide quantitative information on the combustion properties of materials, such as heat flow. The latter is one of the most important variables in the development of a fire. Thus, a new approach would be preferable in order to review the classification of materials according to ULC S102 and ULC S135 (cone calorimeter). The objective of this project is to develop a new approach to classifying materials based on cone calorimeter test results. These results can subsequently be used in numerical modeling as part of a fire safety engineering design. A significant amount of cone calorimeter (ULC S135) testing of materials currently evaluated according to ULC S102 will be required.
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Acoustic Membrane Materials Used in Floor Assemblies (Report to Research Consortium for Wood and Wood-Hybrid Mid-Rise Buildings)

https://research.thinkwood.com/en/permalink/catalogue1951
Year of Publication
2014
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Floors

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Encapsulation Materials

https://research.thinkwood.com/en/permalink/catalogue351
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulation
Cone Calorimeter
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, three materials were selected for investigation as encapsulation materials for combustible structural elements: Type X gypsum board (12.7 mm thick and 15.9 mm thick), cement board (12.7 mm thick), and gypsum-concrete (25 mm thick and 39 mm thick). This report documents the results of cone calorimeter tests conducted to investigate the performance of the three encapsulation materials.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Materials Used In Standard Exterior Wall Tests

https://research.thinkwood.com/en/permalink/catalogue352
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Bijloos, Martin
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Fire
Keywords
Mid-Rise
Exterior Wall
Cone Calorimeter
Language
English
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-A1-100035-01.3 3 rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. As a result, full-scale standard exterior wall assembly tests were conducted to CAN/ULC-S134. The foam insulations examined for use in the full-scale test assemblies were typical of those used in present-day construction. In addition, a non-standard test (Test EXTW-5) was conducted using a reduced scale rain screen wall system. In addition to the full-scale tests, cone calorimeter tests were conducted to select and characterize the foam insulation, water resistant barrier and FRT plywood materials, as well as the regular gypsum sheathing, used in the full-scale tests. Tests were also conducted with the foam insulations protected using the sheathing materials used in the full-scale tests. The results of the cone calorimeter tests are provided in this report.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.