Skip header and navigation

6 records – page 1 of 1.

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Language
English
Research Status
Complete
Summary
In recent decades, the wood industry has developed a number of innovative mass timber products. Among others, structural composite lumber (SCL) products, such as parallel strand lumber (PSL), laminated strand lumber (LSL) and laminated veneer lumber (LVL...
Online Access
Free
Resource Link
Less detail

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
General Application

A New Approach to Classify the Degree of Combustibility of Materials

https://research.thinkwood.com/en/permalink/catalogue2257
Topic
Fire
Material
Timber (unspecified)
Application
General Application
Organization
Université Laval
Country of Publication
Canada
Material
Timber (unspecified)
Application
General Application
Topic
Fire
Keywords
Fire Safety
Combustion Properties
Heat Flux
Numerical Modeling
Cone Calorimeter Testing
Flame Spread
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval
Summary
The use of materials in a building is traditionally determined from its combustibility (via ULC S114 or ULC S135) and by its flame propagation index (via ULC S102). The ULC S102 Flame Spread Test, developed in 1943, has historically reduced risk through its method of classifying materials. However, this test does not provide quantitative information on the combustion properties of materials, such as heat flow. The latter is one of the most important variables in the development of a fire. Thus, a new approach would be preferable in order to review the classification of materials according to ULC S102 and ULC S135 (cone calorimeter). The objective of this project is to develop a new approach to classifying materials based on cone calorimeter test results. These results can subsequently be used in numerical modeling as part of a fire safety engineering design. A significant amount of cone calorimeter (ULC S135) testing of materials currently evaluated according to ULC S102 will be required.
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Acoustic Membrane Materials Used in Floor Assemblies (Report to Research Consortium for Wood and Wood-Hybrid Mid-Rise Buildings)

https://research.thinkwood.com/en/permalink/catalogue1951
Year of Publication
2014
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Floors

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Encapsulation Materials

https://research.thinkwood.com/en/permalink/catalogue351
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Materials Used In Standard Exterior Wall Tests

https://research.thinkwood.com/en/permalink/catalogue352
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls

6 records – page 1 of 1.