Skip header and navigation

11 records – page 1 of 2.

Acoustic Testing and Wood Supply for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1830
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Organization
ARUP
StructureCraft
InterTek
Year of Publication
2017
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Impact Noise Transmission
Concrete Topping
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Shop Drawings and Details for Tests B. Sound and Impact Test Results Summary C. Test 1: Sound and Impact Transmission Test - CLT D. Test 2: Sound and Impact Transmission Test - Concrete Topping E. Test 3a: Sound and Impact Transmission Test - Marmoleum F. Test 3b: Sound and Impact Transmission Test - Marmoleum G. Test 4: Sound and Impact Transmission Test - Carpet H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Online Access
Free
Resource Link
Less detail

Direct Impact Sound Insulation of Cross Laminate Timber Floors with and without Toppings

https://research.thinkwood.com/en/permalink/catalogue227
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Zeitler, Berndt
Schoenwald, Stefan
Sabourin, Ivan
Organization
Inter-noise
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
North America
Sound Insulation
Concrete Topping
Interlayer
Conference
Inter-Noise 2014
Research Status
Complete
Notes
November 16-19, 2014, Melbourne, Australia
Summary
Cross Laminated Timber (CLT), which is well suited for construction of tall buildings, is becoming a more popular construction material in North America. However, to ensure comfortable living conditions, sound insulation measures are necessary. The study presented here compares results of direct impact sound insulation of 5- and 7-ply CLT floors covered with different a concrete toppings on various interlayers. Improvements of up to 21dB in Weighted Normalized Impact Sound Pressure Level (Ln,w) were observed using a newly proposed reference floor for CLTs. Furthermore, the improvements of floor coverings on CLT floors are compared to those achieved on other types of construction, such as the reference concrete floor. The improvements of Ln,w tend to be higher on the concrete floors than on the CLT floors tested. These and other findings will be presented.
Online Access
Free
Resource Link
Less detail

Effect of Design Parameters on Mass Timber Floor Vibration Performance

https://research.thinkwood.com/en/permalink/catalogue2683
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Research Status
Complete
Summary
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
Online Access
Free
Resource Link
Less detail

Effects of Heavy Topping on Vibrational Performance of Cross-Laminated Timber Floor Systems

https://research.thinkwood.com/en/permalink/catalogue2708
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Schwendy, Benjamin
Publisher
Clemson University
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Vibration Serviceability
Concrete Topping
Panels
Insulation
Research Status
Complete
Summary
Cross-Laminated Timber (CLT) is gaining momentum as a competitor to steel and concrete in the construction industry. However, with CLT being relatively new to North America, it is being held back from realizing its full potential by a lack of research in various areas, such as vibration serviceability. This has resulted in vague design guidelines, leading to either overly conservative designs, hurting profit margins, or leading to overly lenient designs, resulting in occupancy discomfort. Eliminating these design inefficiencies is paramount to expanding the use of CLT and creating a more sustainable construction industry. This thesis focuses on the effect of a heavy topping, in this case 2" of concrete over a layer of rigid insulation, on a CLT floor. To this end, modal analysis was performed on two spans of three CLT panels in the Andy Quattlebaum Outdoor Education Center at Clemson University. By performing a series of instrumented heel-drop tests with a roving grid of accelerometers, the natural frequencies, mode shapes, frequency response functions, and damping coefficients were determined. By comparing the results to several different numerical models, the most appropriate model was selected for use in future design. In addition, a walking excitation test was performed to calculate the root mean square acceleration of the floor for comparison to current design standards. This study found that, with a layer of rigid insulation separating the topping and the panel, the system behaved predictably like a non-composite system. The resultant mode shapes also verified that the boundary conditions behaved very close to “hinged” and showed that the combination of the surface splines and the continuous topping provide significant transverse continuity in terms of response to vibrations. Lastly, the results of the walking excitation test showed that, with some further study, the current design standards for steel vibration serviceability can be applied to great effect to CLT systems.
Online Access
Free
Resource Link
Less detail

Effet des Paramètres de Conception Sur la Performance Vibratoire des Planchers Massifs en Bois

https://research.thinkwood.com/en/permalink/catalogue2684
Year of Publication
2020
Topic
Acoustics and Vibration
Energy Performance
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Energy Performance
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Research Status
Complete
Summary
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Online Access
Free
Resource Link
Less detail

Encapsulation of Mass Timber Floor Surfaces

https://research.thinkwood.com/en/permalink/catalogue2528
Year of Publication
2020
Topic
Design and Systems
Fire
Material
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Floors

Hybrid Cross Laminated Timber Plates (HCLTP) – Numerical Optimisation Modelling and Experimental Tests

https://research.thinkwood.com/en/permalink/catalogue1751
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Sustersic, Iztok
Brank, Boštjan
Dujic, Bruno
Brezocnik, Jaka
Gavric, Igor
Aicher, Simon
Dill-Langer, Gerhard
Winter, Wolfgang
Fadai, Alireza
Demschner, Thomas
Ledinek, Gregor
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Timber Ribs
Concrete Topping
Ultimate Limit States
Serviceability Limit States
Numerical Modelling
Experimental Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4989-4996
Summary
This paper presents the development of two new types of hybrid cross-laminated timber plates (HCLTP) with an aim to improve structural performance of existing cross-laminated timber plates (Xlam or CLT). The first type are Xlam plates with glued timber ribs and the second type are Xlam plates with a concrete topping. A numerical...
Online Access
Free
Resource Link
Less detail

Mass Plywood (MPP) Concrete Composite Floor Systems

https://research.thinkwood.com/en/permalink/catalogue2795
Topic
Connections
Mechanical Properties
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Mass Plywood
Concrete Topping
Bending Stiffness
Span Length
HBV Connector
Research Status
In Progress
Notes
Project contacts are Andre Barbosa and Arijit Sinha at Oregon State University
Summary
In order to facilitate adoption of new mass timber products into practice, physical testing is required to understand and predict structural behavior. While extensive testing has been conducted at Oregon State on basic engineering properties of mass plywood panels (MPP) and MPP-to-MPP connections, there exists no experimental data on connections between MPP and other timber members (e.g. glulam) or on composite behavior of MPP with a concrete topping. Previous testing on CLT concrete-composite systems looked at different CLT-to-concrete connection systems, with HBV shear connectors-steel plates partially embedded in the timber with epoxy resin- as a strong candidate in terms of strength and stiffness performance. This project will focus on exploring the performance of MPP-concrete composite systems with HBV connectors.
Resource Link
Less detail

Seismic Performance of Cross-Laminated Timber and Cross-Laminated Timber-Concrete Composite Floor Diaphragms

https://research.thinkwood.com/en/permalink/catalogue2193
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Organization
TallWood Design Institute
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Stiffness
Diaphragms
Concrete Topping
Tall Wood
Strength
Research Status
In Progress
Notes
Project contact is André Barbosa at Oregon State University
Summary
This project develops benchmark data needed to generate design guidelines for structural engineers to calculate strength & stiffness of CLT-diaphragms, with and without concrete toppings. The project includes a full-scale test of a two-story mass timber building at the UC San Diego shake table in collaboration with the larger project, “Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings” which features collaborators from throughout the western US and is funded by the Natural Hazards Engineering Research Infrastructure (NHERI) program of the National Science Foundation.
Less detail

Timber-Concrete Composites Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue616
Year of Publication
2015
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Keywords
Concrete Topping
Mid-Scale
Push-Out Tests
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Timber-Concrete Composite (TCC) systems have been employed as an efficient solution in medium span structural applications; their use remains largely confined to European countries. TCC systems are generally comprised of a timber and concrete element with a shear connection between. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America has offered designers greater versatility in terms of floor plans and architectural expression in modern timber and hybrid structures. The opportunity exists to enhance the strength, stiffness, fire, and vibration performance of floors using these products by introducing a concrete topping, connected to the timber to form a composite. A research program at the University of British Columbia Vancouver investigates the performance of five different connector types (a post-installed screw system, cast-in screws, glued-in steel mesh, adhesive bonded, and mechanical interlocking) in three different EWPs (Cross-Laminated-Timber, Laminated-Veneer-Lumber, and Laminated-Strand-Lumber). Over 200 mid-scale push-out tests were performed in the first stage of experimental work to evaluate the connector performance and to optimize the design of subsequent vibration and bending testing of full-scale specimens, including specimens subjected to long-term loading.
Online Access
Payment Required
Resource Link
Less detail

11 records – page 1 of 2.