This project aims to support the construction of tall wood buildings by identifying encapsulation methods that provide adequate protection of mass timber elements; the intention is that these methods could potentially be applied to mass timber elements so that the overall assembly could achive a 2 h fire resistance rating.
During the past few years, a relatively new technology has emerged in North America and changed the way professionals design and build wood structures: Cross-laminated Timber (CLT). CLT panels are manufactured in width ranging from 600 mm to 3 m. As such, fastening them together along their major strength axis is required in order to form a singular structural assembly resisting to in-plane and out-of-plane loading. Typical panel-to-panel joint details of CLT assemblies may consist of internal spline(s), single or double surface splines or half-lapped joints. These tightly fitted joint profiles should provide sufficient fire-resistance, but have yet to be properly evaluated for fire-resistance in CLT assemblies.
The experimental portion of the study consisted at conducting ten (10) intermediate-scale fire-resistance tests of CLT floor assemblies with four (4) types of panel-to-panel joints and three (3) CLT thicknesses. The data generated from the intermediate-scale fire tests were used to validate a finite element heat transfer model, a coupled thermal-structural model and a simplified design model. The latter is an easy-to-use design procedure for evaluating the fire integrity resistance of the four commonly-used CLT floor assemblies and could potentially be implemented into building codes and design standards. Based on the test data and models developed in this study, joint coefficient values were derived for the four (4) types of CLT panel-to-panel joint details. Joint coefficients are required when assessing the fire integrity of joints using simple design models, such as the one presented herein and inspired from Eurocode 5: Part 1-2.
The contribution of this study is to increase the knowledge of CLT exposed to fire and to facilitate its use in Canada and US by complementing current fire-resistance design methodologies of CLT assemblies, namely with respect to the fire integrity criterion. Being used as floor and wall assemblies, designers should be capable to accurately verify both the load-bearing and separating functions of CLT assemblies in accordance with fire-related provisions of the building codes, which are now feasible based on the findings of this study.
There has been no research to date exploring whether timber products can provide effective thermal capacitance in residential or commercial construction. This research is exploring the use of unique mass-timber products to provide a new form of thermal performance capacitance
within the built fabric of new and existing homes. The development of mass timber products is a new paradigm in material and building science research in Australia, requiring the accounting for carbon emissions, carbon sequestration, material embodied energy and material thermal properties for this renewable resource. This paper focuses on the results from preliminary building simulation studies encompassing house energy rating simulations and a comparative analysis of embodied energy and carbon storage for a series of house plans in Australia.
International Conference on Performance-based and Life-cycle Structural Engineering
Research Status
Complete
Notes
December 9-11, 2015, Brisbane, Australia
Summary
Tall timber building designs have utilized cross-laminated timber (CLT) significantly over the past decade due the sustainable nature of timber and the many advantages of using an engineered mass timber product. Several design methods have been established to account for the composite action between the orthogonally adhered timber plies. These methods assume perfect bonding of the adjacent plies by the adhesive. CLT designs methods for timber in fire have also been formulated. These methods rely on the relatively constant charring rate of timber to calculate a sacrificial layer to be added onto the cross-sectional area. While these methods focus on the timber failure mode of reduced cross section by charring, the failure mode of ply delamination is often overlooked and understudied. Due to the reduction of shear and normal strength in the adhesive, the perfect bond assumption can be questioned and a deeper look into the mechanics of CLT composite action and interfacial stress needs be conducted. This paper seeks to highlight the various design methods for CLT design and identify the failure mode of delamination not present in the current design codes.
Research has repeatedly pointed out the suitability of adhesive bonding to substitute to “traditional” joining techniques for numerous materials and loads, including timber to glass. Practitioners, however, are still reluctant to implement them into their designs. Adhesion as a method of joining, particularly in the context of hybrid structures, presupposes knowledge of all involved materials, including codes and procedures; most practitioners however tend to be focused on just a subset of materials. While such specialization is not unusual, it makes it challenging to implement novelty (i.e. new materials or techniques). Additionally, when it comes to adhesion where most of the knowledge has been generated by chemists, the lines become even more blurred. Taking the example of a pedestrian timber-glass bridge, this research shows how design and dimensioning of complex bonded hybrid structures can be performed in accordance with “traditional” engineering practice. The paper guides through every step, from the first concepts to the final design, including the manufacturing, of a relatively complex structure, in which timber and glass act together as equivalent members. The compliance of this process with engineering models is emphasized, and the embedment into existing codes and standards is sought after to ensure acceptancy by practitioners.
Figure 1 shows a floor plan and elevation along with the preliminary shear wall locations for a sixstorey wood-frame building. It is assumed some preliminary calculations have been provided to determine the approximate length of wall required to resist the lateral seismic loads.
If the preliminary design could not meet the drift limit requirement using the base shear obtained based on the actual period, the shear walls should be re-designed until the drift limit requirement is satisfied.
This paper discusses the design principles of timber connections for ductility with focus on laterally-loaded dowel-type fasteners. Timber connections are critical components of timber structures: not only do they join members, but they also affect load capacity, stiffness, and ductility of the overall system. Moreover, due to the brittle failure behaviour of timber when loaded in tension or shear, they are often the only source of ductility and energy dissipation in the structure in case of overloading, much like a fuse in an electrical circuit.
This paper addresses current challenges in connection design for ductility, reviews selected best-practice design approaches to ensure ductility in timber connections, suggests simple performance-based design criteria to design connections for ductility, and aims to stimulate a discussion around potential solutions to implement safe design principles for ductile connections in future design codes and connection testing regimes.
The paper examines the behaviour of structural timber members subjected to axial compression or combined axial compression and bending. Based on experimental and numerical investigations, the accuracy of the existing approach in Eurocode 5 for the design of timber members subjected to axial compression or combined axial compression and bending is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created for the validation of calculation models and for the assessment of design concepts. In order to assess the behaviour of timber members subjected to axial compression or combined axial compression and bending, strain-based calculation models were developed.
The investigations indicate that the existing approach of Eurocode 5 based on 2nd order analysis can lead to an overestimation of the load-bearing capacity. Hence, a modified design approach was developed which agrees with the results of the Monte Carlo simulations very well and thus ensures a safe and economical design of timber members subjected to compression or combined compression and bending.
During the last few years, the merging of timber building tradition with the application of new
technologies has produced new prefabricated building systems in Europe and North America. Mid-rise buildings present a unique opportunity to apply new timber technologies. Chile has shown sustained growth of buildings construction during the past decades but little further
development in the use of wood. To establish the feasibility of timber systems applied to the Chilean context this research considered social aspects, technical aspects and local standards related to the manufacture and construction using timber components. A project proposal is used to analyze the architectural applications of timber systems according to the Chilean context. The design considers the case of densification in the city of Santiago and investigates the possibility of developing mid-rise structures using the structural properties and features of timber systems. So far only two systems applied to mid-rise structures have been tested for seismic resistance on full scale prototypes: Midply and Cross Laminated Timber.