Skip header and navigation

33 records – page 1 of 4.

Adhesive-Bonded Timber-Concrete Composites - Experimental Investigation of Thermal-Hygric Effects

https://research.thinkwood.com/en/permalink/catalogue1519
Year of Publication
2016
Topic
Serviceability
Mechanical Properties
Material
Timber-Concrete Composite
Author
Seim, Werner
Eisenhut, Lars
Kühlborn, Sonja
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Topic
Serviceability
Mechanical Properties
Keywords
Climate
Long-term
Shear Strength
Deformation
Temperature
Moisture Content
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 597-605
Summary
The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale...
Online Access
Free
Resource Link
Less detail

An Enhanced Beam Model for Glued Laminated Structures that takes Moisture, Mechano-sorption and Time Effects into Account

https://research.thinkwood.com/en/permalink/catalogue44
Year of Publication
2014
Topic
Moisture
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Ormarsson, Sigurdur
Steinnes, Jan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Moisture
Serviceability
Keywords
Climate
Creep
Finite Element Model
Hygro-Mechanical
Long-term
Visco-Elastic
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
There is a need of more advanced analysis for studying how the long-term behaviour of glued laminated timber structures is affected by creep and by cyclic variations in climate. A beam theory is presented able to simulate the overall hygro-mechanical and...
Online Access
Free
Resource Link
Less detail

Building Climate – Long-Term Measurements to Determine the Effect on the Moisture Gradient in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue266
Year of Publication
2014
Topic
Serviceability
Moisture
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems

Climatological Analysis for Hygrothermal Performance Evaluation: Mid-Rise Wood

https://research.thinkwood.com/en/permalink/catalogue755
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Comparative Energy Consumption Study on Tall Cross Laminated Timber Buildings for U.S. Climates

https://research.thinkwood.com/en/permalink/catalogue1636
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Khavari, Ali
Tabares-Velasco, Paulo
Zhao, Shichun
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
US
Energy Efficiency
Internal Loads
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3134-3141
Summary
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy...
Online Access
Free
Resource Link
Less detail

Comparison of Carbon Footprints: Mass Timber Buildings vs Steels – A Literature Review

https://research.thinkwood.com/en/permalink/catalogue2380
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Cooney, Emily
Publisher
Lakehead University
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Carbon Footprint
Mass Timber
Steel
Greenhouse Gases
Climate Change
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
Sustainability and innovation are key components in the fight against climate change. Mass timber buildings have been gaining popularity due to the renewable nature of timber. Although research comparing mass timber buildings to more mainstream buildings such as steel is still in the early stages and therefore, limited. We are looking to determine the difference between carbon footprints of mass timber and traditional steel and concrete buildings. This is done with the intention of determining the sustainability and practicality of mass timber buildings.
Online Access
Free
Resource Link
Less detail

Comparison of Operational Energy Performance among Exterior Wall Systems for Mid-Rise Construction in Canada

https://research.thinkwood.com/en/permalink/catalogue355
Year of Publication
2015
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Wang, Jieying
Morris, Paul
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Energy Performance
Keywords
Mid-Rise
Canada
Exterior Walls
Energy Consumption
Residential
National Energy Code of Canada for Buildings
Climate
Steel-Stud Framing
Language
English
Research Status
Complete
Summary
The largest source of energy consumption and greenhouse gas emissions in Canada and around the world is buildings. As a consequence, building designers are encouraged to adopt designs that reduce operational energy, through both increasingly stringent energy codes and voluntary green building programs that go beyond code requirements...
Online Access
Free
Resource Link
Less detail

Development of Modular Wooden Buildings with Focus on the Indoor Environmental Quality

https://research.thinkwood.com/en/permalink/catalogue881
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Beikircher, Wilfried
Zingerle, Philipp
Flach, Michael
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Indoor Air Quality
Indoor Climate
Modular Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Online Access
Free
Resource Link
Less detail

Does Timber-Concrete Floor System Save Energy?

https://research.thinkwood.com/en/permalink/catalogue2042
Year of Publication
2018
Topic
Energy Performance
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Author
Liu, Ying
Chang, Wen-Shao
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Topic
Energy Performance
Keywords
Thermal Mass
Simulation
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

33 records – page 1 of 4.