The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale shear and bond specimens under artificial, alternating climatic conditions and on fullscale specimens under natural climatic conditions for an application in construction practice. The development of the shear strength and the deformation behavior under permanent loads were studied, focusing on the different material behavior of wood and concrete regarding changes in temperature and moisture. The general applicability of adhesivebonded timber-concrete composites in construction practice was proved in the investigations.
There is a need of more advanced analysis for studying how the long-term behaviour of glued laminated timber structures is affected by creep and by cyclic variations in climate. A beam theory is presented able to simulate the overall hygro-mechanical and visco-elastic behaviour of (inhomogeneous) glulam structures. Two frame structures subjected to both mechanical and cyclic environmental loading are analysed to illustrate the advantages the model involved can provide. The results indicate clearly both the (discontinuous) inhomogeneity of the glulam products and the variable moisture-load action that occurs to have a significant effect on deformations, section forces and stress distributions within the frame structures that were studied
Cross-laminated timber (CLT) modular construction possesses the advantages of wood, such as excellent carbon storage and thermal insulation, and of modular construction, such as considerably reduced construction period and cost as well as high productivity. This study evaluates the hygrothermal performance of CLT walls considering modular construction in future climatic conditions. Firstly, CLT walls with plywood applied to a core layer were manufactured. A mock-up of a CLT building was produced and its construction process was analyzed. Hygrothermal behavior of the CLT walls was simulated using WUFI simulation program, and the predicted results were verified against measurements obtained from the mock-up experiment. Finally, the hygrothermal performance of the CLT wall was evaluated for four types of insulation and future climate in eight cities of USA. The coefficient of variation—root mean square error (CV(RMSE))—of the temperature and relative humidity inside the ply-lam CLT wall from mock-up experiments and simulation evaluation were 6.43% and 7.02%, respectively, which met the validation criteria. Based on the hygrothermal performance, the ply-lam CLT wall with extruded polystyrene insulation was evaluated as safe from moisture problems in all the eight cities considered in this study. However, the risk of mold growth in all regions and insulation types increased under climate change with a rise of average annual temperature.
Through long-term measurements of climate data (temperature, relative humidity) and timber moisture content on large-span timber structures in buildings of typical construction type and use, data sets were generated which deliver information on the sequence and magnitude of seasonal variations. The measurement of moisture in different depths of the cross-section is of particular interest to draw conclusions on the size and speed of adjustment of the moisture distribution to changing climatic conditions. The moisture gradient has direct influence on the size of the internal stresses and possible damage potential. Similarly, the results provide a review and extension of the previous classification of buildings into use classes. They allow for a more precise indication of range of resulting equilibrium moisture content for the specific use, enabling the installation of timber elements with adjusted moisture content. The results of the research project also support the development of appropriate monitoring systems, which could be used in the form of early warning systems based on climate measurements
There has been no research to date exploring whether timber products can provide effective thermal capacitance in residential or commercial construction. This research is exploring the use of unique mass-timber products to provide a new form of thermal performance capacitance
within the built fabric of new and existing homes. The development of mass timber products is a new paradigm in material and building science research in Australia, requiring the accounting for carbon emissions, carbon sequestration, material embodied energy and material thermal properties for this renewable resource. This paper focuses on the results from preliminary building simulation studies encompassing house energy rating simulations and a comparative analysis of embodied energy and carbon storage for a series of house plans in Australia.
Forests can help mitigate climate change in different ways, such as by storing carbon in forest ecosystems, and by producing a renewable supply of material and energy products. We analyse the climate implications of different scenarios for forestry, bioenergy and wood construction. We consider three main forestry scenarios for Kronoberg County in Sweden, over a 201-year period. The Business-as-usual scenario mirrors today's forestry while in the Production scenario the forest productivity is increased by 40% through more intensive forestry. In the Set-aside scenario 50% of forest land is set-aside for conservation. The Production scenario results in less net carbon dioxide emissions and cumulative radiative forcing compared to the other scenarios, after an initial period of 30–35 years during which the Set-aside scenario has less emissions. In the end of the analysed period, the Production scenario yields strong emission reductions, about ten times greater than the initial reduction in the Set-aside scenario. Also, the Set-aside scenario has higher emissions than Business-as-usual after about 80 years. Increasing the harvest level of slash and stumps results in climate benefits, due to replacement of more fossil fuel. Greatest emission reduction is achieved when biomass replaces coal, and when modular timber buildings are used. In the long run, active forestry with high harvest and efficient utilisation of biomass for replacement of carbon-intensive non-wood products and fuels provides significant climate mitigation, in contrast to setting aside forest land to store more carbon in the forest and reduce the harvest of biomass.
The objective of the task is to select, from the 679 locations in Table C-2 of the 2010 National Building Code of Canada (NBC 2010) [1], several representative locations for which long-term historical weather data exists. This information from these locations can subsequently be used to determine the exterior boundary conditions for input files for hygrothermal simulation programs and hygrothermal testing in the laboratory.
This report discusses the selection of locations for the hygrothermal simulation task of the project on Mid-rise Wood Buildings and the determination of spray-rates and pressure differentials for the water penetration testing portion of the project.
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy simulation program EnergyPlus, the energy efficiency of this emerging building type was evaluated and compared with a light metal frame building system (currently viable construction type for this height based on the U.S. building code). A sensitivity analysis was also conducted to study the impact of different weather and internal load conditions on building energy performances. It was concluded that efficiency of CLT envelope is high for heating energy savings, but its energy performance efficiency can be greatly affected by other factors including weather, internal loading, and HVAC control.
As the population continues to grow in China’s urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.
Wood is a hygroscopic material that primarily adapts its moisture content to the surrounding relative humidity. The climate in a structure or building depends on the building type and the region the structure is located in. In this study, the effect of region on the moisture content of wood was investigated. Measurements taken in 12 ventilated timber structures were compared to the theoretical equilibrium moisture content calculated from the relative humidity and temperature in 107 meteorological stations across Switzerland. The monitored load-bearing elements were made of softwood and protected from the direct impact of weather. The climatic conditions around the Alps, a mountain range that runs from France to Austria and crosses Switzerland, can be divided into the following three different regions: (1) south of the Alps, where the climate is affected mainly by the Mediterranean sea; (2) north of the Alps, where the climate is affected by the Atlantic Ocean; and (3) the inner Alps, where the climate is considered to be relatively dry. The climatic conditions of the three separate regions were reflected in the measurements made in the monitored timber structures. Differences between the regions were quantified. The moisture content and relative humidity, similarly to temperature, depended on altitude (above sea level).