Skip header and navigation

2 records – page 1 of 1.

Analytical and experimental evaluation of the effect of knots on rolling shear properties of cross-laminated timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1942
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Cao, Yawei
Organization
Mississippi State University
Year of Publication
2019
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Rolling Shear
Southern Pine
Center Point Bending Test
Two-Plate Shear Test
Knots
Strength
Failure Mechanism
Research Status
Complete
Summary
Knots are usually regarded as defects when grading lumber. In order to evaluate a member under out-of-plane loading, shear strength is one of the major mechanical properties, specifically, rolling shear (RS) strength is one of the critical mechanical properties of Cross-Laminated Timber (CLT), which determines the flexural strength of CLT under short-span bending loads. Lower grade lumber with a higher percentage of knots is recommended to be utilized for the cross-layer laminations which are mainly responsible for resisting shear stresses. Firstly, shear tests were performed in order to evaluate the effect of knots on longitudinal shear strength using shear blocks. After that, the effect of knots on the RS strength of 3-ply southern yellow pine CLT were investigated by experimental tests and an analytical model. Center-point bending tests with a span-to-depth ratio of 6 and two-plate shear tests with a loading angle of 14° were conducted on six CLT configurations composed of different types of cross layer laminations: clear flatsawn lumber with/without pith, lumber with sound knots with/without pith, and lumber with decayed knots with/without pith. The shear analogy method was implemented to evaluate the RS strength values from the bending test results, which were also compared against the results from the two-plate shear tests. It was found that: (1) The shear blocks containing sound knots had higher shear strength than matched clear shear blocks, the shear blocks containing unsound knots had lower shear strength than the matched clear shear blocks. (2) CLT specimens with cross-layer laminations with either sound knots or decayed knots had higher RS strength. (3) In general, the shear analogy method underestimated the RS strength of CLT specimens containing knots and pith.
Online Access
Free
Resource Link
Less detail

Failure Mechanism of Rolling Shear Failure in Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1172
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Nie, Xin
Organization
University of British Columbia
Year of Publication
2015
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Failure Mechanisms
Rolling Shear
Finite Element Model
Failure Modes
Tension Perpendicular to Grain
Center Point Bending Test
Research Status
Complete
Summary
Wood as building material is gaining more and more attention in the 21st century due to its positive attributes such as light weight, renewability, low carbon footprint and fast construction period. Cross-laminated timber (CLT), as one of the new engineered wood products, requires more research emphasis since its mechanical performance can allow CLT to be utilized in massive timber structures. This thesis focuses on revealing one of the key failure mechanisms of CLT, which is usually referred to as the rolling shear failure. The scientific research conducted in this thesis combined both analytical modelling and experimental material testing. The stresses in CLT cross-layers obtained from a finite-element model were analyzed to differentiate various failure modes possible. Tension perpendicular to grain stress was found to cause cross-layer failure in combined with the rolling shear stress. Experimentally, specimens prepared from 5-layer CLT panels were tested under center-point bending condition. Detailed failure mechanism of CLT cross-layers were recorded with high speed camera to capture the instant when initial failure happened. It is evident that some of the specimens failed in tension perpendicular to grain which verified the modelling results. Variables such as the rate of loading and the manufacturing clamping pressure were designed in experiments to compare their influence to the failure of CLT specimens. In this research, the failure of CLT cross-layer was updated to a combined consequence of both rolling shear stress and tension perpendicular to grain stress. Future research topics and product improvement potentials were given by the end of this thesis.
Online Access
Free
Resource Link
Less detail