Skip header and navigation

7 records – page 1 of 1.

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
General Application

Carbon Footprint Benchmarking of BC Multi-Unit Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2159
Year of Publication
2017
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

Comparison of Carbon Footprints: Mass Timber Buildings vs Steels – A Literature Review

https://research.thinkwood.com/en/permalink/catalogue2380
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Cooney, Emily
Publisher
Lakehead University
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Carbon Footprint
Mass Timber
Steel
Greenhouse Gases
Climate Change
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
Sustainability and innovation are key components in the fight against climate change. Mass timber buildings have been gaining popularity due to the renewable nature of timber. Although research comparing mass timber buildings to more mainstream buildings such as steel is still in the early stages and therefore, limited. We are looking to determine the difference between carbon footprints of mass timber and traditional steel and concrete buildings. This is done with the intention of determining the sustainability and practicality of mass timber buildings.
Online Access
Free
Resource Link
Less detail

Cradle-to-Gate Life-Cycle Assessment of a Glued-Laminated Wood Product from Quebec's Boreal Forest

https://research.thinkwood.com/en/permalink/catalogue2555
Year of Publication
2013
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Author
Laurent, Achille
Gaboury, Simon
Wells, Jean-Robert
Bonfils, Sibi
Boucher, Jean-François
Sylvie, Bouchard
D'Amours, Sophie
Villeneuve, Claude
Publisher
Forest Products Society
Year of Publication
2013
Country of Publication
Canada
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Environmental Impact
Keywords
LCA
Cradle-to-Gate
Sustainability
Greenhouse gas emissions
Carbon Footprint
Language
English
Research Status
Complete
Series
Forest Products Journal
Summary
The building sector is increasingly identified as being energy and carbon intensive. Although the majority of emissions are linked to energy usage during the operation part of a building's life cycle, choice of construction materials could play a significant role in reducing greenhouse gas emissions and other environmental end-point damages. Increasing the use of wood products in buildings may contribute to the solution, but their environmental impacts are difficult to assess and quantify because they depend on a variety of uncertain parameters. The present cradle-to-gate life-cycle analysis (LCA) focuses exclusively on a glued-laminated wood product (glulam) produced from North American boreal forests located in the province of Quebec, Canada. This study uses primary data to quantify the environmental impacts of all necessary stages of products' life cycle, from harvesting the primary resources, to manufacturing the transformed product into glulam. The functional unit is 1 m3 of glulam. This is the first study based on primary data pertaining to Quebec's boreal forest. Quebec's boreal glulam manufacturing was compared with two other LCAs on glulam in Europe and the United States. Our results show that Quebec's glulam has a significantly smaller environmental footprint than what is reported in the literature. From an LCA perspective, there is a significant advantage to producing glulam in Quebec, compared with the European and American contexts. The same holds true in regard to the four end-point damage categories.
Online Access
Free
Resource Link
Less detail

Environmental Performances of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue1343
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls

Timber Tower Research Project

https://research.thinkwood.com/en/permalink/catalogue725
Year of Publication
2017
Topic
Environmental Impact
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Organization
Skidmore Owings and Merrill
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Environmental Impact
Market and Adoption
Keywords
Tall Wood
Carbon Footprint
Concrete Jointed Timber Frame
Language
English
Research Status
Complete
Summary
Tall buildings pose a unique challenge to the sustainability movement because they offer both positive and negative environmental impacts. Positive impacts include reducing urban sprawl, promoting alternative transportation, and allowing efficient energy...
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.