Skip header and navigation

12 records – page 1 of 2.

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
General Application

Bond Between Glulam and NSM CFRP Laminates

https://research.thinkwood.com/en/permalink/catalogue331
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Cross-Laminated Timber Buildings: A WBLCA Case Study Series

https://research.thinkwood.com/en/permalink/catalogue2360
Year of Publication
2019
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Author
Kwok, Alison
Zalusky, Hannah
Rasmussen, Linsday
Rivera, Isabel
McKay, Hannah
Organization
TallWood Design Institute
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Topic
Environmental Impact
Design and Systems
Keywords
LCA
Life-Cycle Assessment
Case Study
Embodied Carbon
Language
English
Research Status
Complete
Summary
This series highlights five whole building life cycle assessments (WBLCAs) of buildings incorporating the building material known as cross-laminated timber (CLT) into some or all of their structure, using a primary cradle-to-grave system boundary. This case study series will serve as an educational resource for academics, professionals, and CLT project stakeholders. While there is some uncertainty about the best way to reduce greenhouse gas emissions from architecture and construction, using CLT and other wood building materials is one possible means to reduce the emissions associated with a building’s materials. When forests are managed sustainably, wood construction materials can contribute to climate change mitigation goals as an indefinite carbon store and as a replacement of other fossil-fuel intensive materials. WBLCA is an assessment method to estimate the environmental impacts of buildings; this series offers insight into the current possibilities and limitations of WBLCA for CLT buildings. The series begins with background information on WBLCA methods and CLT, a review of previously published CLT building WBLCAs, and a life cycle assessment of an individual CLT wall element using the WBLCA softwares Tally® and Athena Impact Estimator for Buildings (Athena IE).
Online Access
Free
Resource Link
Less detail

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

A Holistic Approach for Industrializing Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2378
Year of Publication
2019
Topic
Site Construction Management
Design and Systems
Material
Timber (unspecified)
Application
Wood Building Systems
Author
Santana-Sosa, Aída
Fadai, Alireza
Year of Publication
2019
Country of Publication
Austria
Format
Conference Paper
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Site Construction Management
Design and Systems
Keywords
Prefabrication
Off-site Construction
BIM
Mass Timber
Construction
Carbon
Language
English
Conference
Sustainable Built Environment D-A-CH Conference
Research Status
Complete
Summary
Many strategies have been investigated seeking for efficiency in construction sector, since it has been pointed out as the largest consumer of raw materials worldwide and responsible of about 1/3 of the global CO2 emissions. While operational carbon has been strongly reduced due to building regulations, embodied carbon is becoming dominating. Resources and processes involved from material extraction to building erection should be carefully optimized aiming to reduce the emissions from the cradle to service. New advancements in timber engineering have shown the capabilities of this renewable and CO2 neutral material in multi-storey buildings. Since their erection is based on prefabrication, an accurate construction management is eased where variations and waste are sensible to be minimized. Through this paper, the factors constraining the use of wood as main material for multi-storey buildings will be explored and the potential benefits of using Lean Construction principles in the timber industry are highlighted aiming to achieve a standardized workflow from design to execution. Hence, a holistic approach towards industrialization is proposed from an integrated BIM model, through an optimized supply chain of off-site production, and to a precise aligned scheduled on-site assembly.
Online Access
Free
Resource Link
Less detail

Mass Timber / Research and Design

https://research.thinkwood.com/en/permalink/catalogue2183
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
General Information
Material
CLT (Cross-Laminated Timber)
Timber (unspecified)
Application
General Application
Wood Building Systems

Potential for Tall Wood Buildings to Sequester Carbon, Support Forest Communities, and Create New Options for Forest Management

https://research.thinkwood.com/en/permalink/catalogue724
Topic
Environmental Impact
Market and Adoption
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bergman, Richard
Kelley, Stephen
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Market and Adoption
Cost
Keywords
Life Cycle Analysis
Carbon Sequestration
Financial Analysis
Life Cycle Costs
Economic Impact
Research Status
In Progress
Summary
The primary outcome of this work is to provide integrated analysis of the environmental, financial, and social benefits and costs of using CLT in tall wood buildings. Secondary outcomes will be (1) information, including a design team checkoff that can be used to inform the building community as they make decisions on specific, new building projects, and (2) an informational foundation for these stakeholders and others to begin to evaluate the complex tradeoffs between, and optimization of, environmental, financial, and social benefits and costs.
Resource Link
Less detail

Prestressed Glulam Beams Reinforced with CFRP Bars

https://research.thinkwood.com/en/permalink/catalogue110
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

A Study of the Viability of Cross Laminated Timber for Residential Construction

https://research.thinkwood.com/en/permalink/catalogue2358
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Smyth, Max
Publisher
KTH Royal Institute of Technology
Year of Publication
2018
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Residential Buildings
Construction
Sustainability
Carbon
Language
English
Research Status
Complete
Summary
This report presents an overview into cross laminated timber (CLT) as a construction material and how it compares to traditional methods of construction. CLT is also examined in the context of a move to off-site manufacturing (OSM) and a greater emphasis on sustainability in the construction sector. In this context it is found to perform well with mass timber products such as CLT being the only carbon negative building materials capable of building mid and high-rise buildings. The barriers and opportunities for CLT are explored looking at literature, industry reports and case studies. The main barriers to wider use of CLT still come from uncertainties around the material. Although they have been proven to not be a problem, worries over issues such as how it performs during fires and the lifetime of buildings persist. A lack of standardisation may be the primary cause for this as a range of products and specifications across different manufactures and countries creates confusion and means that each building needs to be individually specified. The opportunities identified for CLT include its carbon saving properties which could benefit governments wanting to reach their carbon reduction targets. In addition, the ability to use CLT on a wider range of sites such as unstable brownfield land and over service tunnels lends to its strength in aiding with urban densification. In terms of costs, these are found to be comparable to those of traditional construction methods with high material costs being offset by reduced foundations and construction time. CLT buildings do, however, face a premium in insurance costs. Transport costs, resulting from a concentrated production base in central Europe, also add a considerable amount to the overall cost of the finished product. This in turn encourages domestic production in countries outside of Europe. The possibilities for CLT in the UK residential construction market are investigated with a focus on mid-rise and high-rise flat construction as that is what the economics and material properties of CLT most lend itself to. Although CLT currently has a low market share of less than 0.1% of homes in this sector there is the potential for this to increase to 20-60% over time. The lower range of this estimate is not predicted to be reached before 2035 and this is also dependant on rising CLT production levels. The volume of timber that is needed to manufacture enough CLT to reach these increased construction volumes can be sourced sustainably from existing forests production in Europe and North America. In addition, the UK has enough excess timber harvesting capacity to provide for the entirety of CLT buildings in the UK, however, large scale domestic CLT production is required to make this a reality.
Online Access
Free
Resource Link
Less detail

Timber Tower Research: Concrete Jointed Timber Frame

https://research.thinkwood.com/en/permalink/catalogue440
Year of Publication
2014
Topic
Design and Systems
Environmental Impact
Application
Hybrid Building Systems
Author
Baker, William
Horos, David
Johnson, Benton
Schultz, Joshua
Organization
Structures Congress
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Carbon Dioxide Emissions
Tall Wood
Concrete Jointed Timber Frame
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Tall buildings pose a challenge to the sustainability movement because they offer both positive and negative environmental impacts. Positive impacts include reducing urban sprawl, promoting alternative transportation, and allowing efficient energy use on...
Online Access
Payment Required
Resource Link
Less detail

12 records – page 1 of 2.