The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential...
This paper focused on energy consumption and carbon emission for heating and cooling during a building’s operation stage, and examined the energy effects of using Cross Laminated Timber (CLT) as an alternative building material to reinforced concrete (RC) in China’s 31 key cities located in different climate zones...
The 58th International Convention of Society of Wood Science and Technology
Research Status
Complete
Notes
June 7-12, 2015, Grand Teton National Park, Jackson, Wyoming, USA
Abstract
Documenting the environmental performance of building products is becoming increasingly common. Developing environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one way to provide scientific documentation. Many U.S. structural wood products...