Skip header and navigation

77 records – page 1 of 8.

An Application of the CEN/TC350 Standards to an Energy and Carbon LCA of Timber Used in Construction, and the Effect of End-of-Life Scenarios

https://research.thinkwood.com/en/permalink/catalogue2376
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Symons, Katie
Moncaster, Alice
Symons, Digby
Year of Publication
2013
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Embodied Carbon
Life-Cycle Assessment
Built Environment
End of Life
LCA
Europe
Conference
Australian Life Cycle Assessment Society conference
Research Status
Complete
Summary
The use of timber construction products and their environmental impacts is growing in Europe. This paper examines the LCA approach adopted in the European CEN/TC350 standards, which are expected to improve the comparability and availability of Environmental Product Declarations (EPDs). The embodied energy and carbon (EE and EC) of timber products is discussed quantitatively, with a case study of the Forte building illustrating the significance of End-of-Life (EoL) impacts. The relative importance of timber in the context of all construction materials is analysed using a new LCA tool, Butterfly. The tool calculates EE and EC at each life cycle stage, and results show that timber products are likely to account for the bulk of the EoL impacts for a typical UK domestic building.
Online Access
Free
Resource Link
Less detail

Assessment and Optimisation of CFRP Reinforced Glulam Beams - A Feasibility Study in Design Stage Reinforcement Configurations for Pedestrian Bridge Applications

https://research.thinkwood.com/en/permalink/catalogue2458
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Bond Between Glulam and NSM CFRP Laminates

https://research.thinkwood.com/en/permalink/catalogue331
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Author
Sena-Cruz, José
Jorge, Marco
Branco, Jorge
Cunha, Vitor
Publisher
ScienceDirect
Year of Publication
2013
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Keywords
Carbon Fiber Reinforced Polymer
Pull-Out Tests
Bond behavior
Stress-Slip
Research Status
Complete
Series
Construction and Building Materials
Summary
With the aim of evaluating the bond behaviour between glulam and carbon fibre reinforced polymer laminates strips, an experimental program using pull-out tests was carried, when the near-surface strengthening technique is applied. Two main variables were studied: the bond length and the type of pull-out test configuration. The instrumentation included the loaded and free-end slips, as well as the pullout force. Based on the obtained experimental results, and applying an analytical-numerical strategy, the local bond stress-slip relationship was determined. In this work the tests are described, the obtained results are presented and analysed, and the applicability of an inverse analysis to obtain the local bond law is demonstrated.
Online Access
Free
Resource Link
Less detail

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems
Author
Dewsbury, Mark
Geard, Detlev
Fay, Roger
Organization
International Building Performance Simulation Association
Year of Publication
2012
Format
Conference Paper
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Australia
Building Code
Building Code of Australia
Carbon
Climate Change
Codes
Embodied Energy
Mass Timber
Thermal
Conference
ASim 2012
Research Status
Complete
Notes
November 25-27, 2012, Shanghai, China
Summary
There has been no research to date exploring whether timber products can provide effective thermal capacitance in residential or commercial construction. This research is exploring the use of unique mass-timber products to provide a new form of thermal performance capacitance within the built fabric of new and existing homes. The development of mass timber products is a new paradigm in material and building science research in Australia, requiring the accounting for carbon emissions, carbon sequestration, material embodied energy and material thermal properties for this renewable resource. This paper focuses on the results from preliminary building simulation studies encompassing house energy rating simulations and a comparative analysis of embodied energy and carbon storage for a series of house plans in Australia.
Online Access
Free
Resource Link
Less detail

Carbon Aspects Promote Building with Wood

https://research.thinkwood.com/en/permalink/catalogue882
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Fruehwald, Arno
Knauf, Marcus
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Environmental Impact
Keywords
carbon pools
CO2 Reduction
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Long service life, low maintenance requirements during service life reduce CO2-emissions. The use of wood for building purposes has the highest carbon mitigation potential, especially attributed to the high displacement factors and the long service life of products. The carbon mitigation of wooden building products is between 7.0 and 8.5 tCO2 per m³ of products and between 5.5 and 6.5 tCO2 per m³ of harvested wood respectively.
Online Access
Free
Resource Link
Less detail

Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies

https://research.thinkwood.com/en/permalink/catalogue3032
Year of Publication
2018
Topic
Environmental Impact
Author
Ximenes, Fabiano A.
Kathuria, Amrit
Barlaz, Morton A.
Cowie, Annette L.
Organization
North Carolina State University
Publisher
Springer
Year of Publication
2018
Format
Journal Article
Topic
Environmental Impact
Keywords
Carbon
Engineered Wood Products
Decay
Landfill
Greenhouse Gas Inventory
Methane
Research Status
Complete
Series
Carbon Balance and Management
Summary
Background There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4 g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.
Online Access
Free
Resource Link
Less detail

Carbon Footprint Benchmarking of BC Multi-Unit Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2159
Year of Publication
2017
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

Carbon Impact and Cost of Mass Timber Beam–Column Gravity Systems

https://research.thinkwood.com/en/permalink/catalogue2883
Year of Publication
2021
Topic
Environmental Impact
Application
Frames
Author
Chaggaris, Rachel
Pei, Shiling
Kingsley, Greg
Feitel, Alexis
Organization
Colorado School of Mines
Editor
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Frames
Topic
Environmental Impact
Keywords
IBC
Tall Wood Buildings
Gravity Framing System
Embodied Carbon
Mass Timber
Biogenic Carbon
Research Status
Complete
Series
Sustainability
Summary
The need to lower the embodied carbon impact of the built environment and sequester carbon over the life of buildings has spurred the growth of mass timber building construction, leading to the introduction of new building types (Types IV-A, B, and C) in the 2021 International Building Code (IBC). The achievement of sustainability goals has been hindered by the perceived first cost assessment of mass timber systems. Optimizing cost is an urgent prerequisite to embodied carbon reduction. Due to a high level of prefabrication and reduction in field labor, the mass timber material volume constitutes a larger portion of total project cost when compared to buildings with traditional materials. In this study, the dollar cost, carbon emitted, and carbon sequestered of mass timber beam–column gravity system solutions with different design configurations was studied. Design parameters studied in this sensitivity analysis included viable building types, column grid dimension, and building height. A scenario study was conducted to estimate the economic viability of tall wood buildings with respect to land costs. It is concluded that, while Type III building designations are the most economical for lower building heights, the newly introduced Type IV subcategories remain competitive for taller structures while providing a potentially significant embodied carbon benefit.
Online Access
Free
Resource Link
Less detail

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

77 records – page 1 of 8.