Skip header and navigation

10 records – page 1 of 1.

Assessment and Optimisation of CFRP Reinforced Glulam Beams - A Feasibility Study in Design Stage Reinforcement Configurations for Pedestrian Bridge Applications

https://research.thinkwood.com/en/permalink/catalogue2458
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue640
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Echavarria, Cesar
Echavarría, Beatriz
Cañola, Hernán
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Keywords
Bamboo
CFRP
Load-Deformation
Reinforcement
Stiffness
Strength
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension and along its sides with the carbon fiber-reinforced polymer CFRP or bamboo. A series of CFRP reinforced glulam beams and bamboo reinforced glulam beams were tested to determine their load-deformation characteristics. Experimental work for evaluating the reinforcing technique is reported here. According to experiment results, the CFRP and bamboo reinforcements led to a higher glulam beam performance. By using CFRP and bamboo reinforcements several improvements in strength may be obtained.
Online Access
Free
Resource Link
Less detail

Bond Between Glulam and NSM CFRP Laminates

https://research.thinkwood.com/en/permalink/catalogue331
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Author
Sena-Cruz, José
Jorge, Marco
Branco, Jorge
Cunha, Vitor
Publisher
ScienceDirect
Year of Publication
2013
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Keywords
Carbon Fiber Reinforced Polymer
Pull-Out Tests
Bond behavior
Stress-Slip
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
With the aim of evaluating the bond behaviour between glulam and carbon fibre reinforced polymer laminates strips, an experimental program using pull-out tests was carried, when the near-surface strengthening technique is applied. Two main variables were studied: the bond length and the type of pull-out test configuration. The instrumentation included the loaded and free-end slips, as well as the pullout force. Based on the obtained experimental results, and applying an analytical-numerical strategy, the local bond stress-slip relationship was determined. In this work the tests are described, the obtained results are presented and analysed, and the applicability of an inverse analysis to obtain the local bond law is demonstrated.
Online Access
Free
Resource Link
Less detail

Evaluation of Delamination and Bending Performance of Composite CLT Reinforced with CFRP

https://research.thinkwood.com/en/permalink/catalogue2203
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Song, Yo-Jin
Hwan Lee, In
Song, Da-Bin
Hong, Soon-Il
Publisher
Society of Wood Science and Technology
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Keywords
Delamination
CFRP
Bending Strength
Japanese Larch
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Online Access
Free
Resource Link
Less detail

Flexural Strengthening of Composite Bridge Glued Laminated Timber Beams-Concrete Plate Using CFRP Layers

https://research.thinkwood.com/en/permalink/catalogue2587
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Mujiman, M
Igustiany, F
Hakiki, R
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
CFRP
Carbon Fiber Reinforced Polymer
Flexural Strength
Stiffness
Ductility
Reinforcement
Language
English
Research Status
Complete
Series
IOP Conference Series: Materials Science and Engineering
Summary
The timber bridge design although economical, often has difficulty producing enough rigidity so that a solution is needed to solve it. The use of CFRP (Carbon Fiber Reinforced Polymer) as a reinforcement of structural elements if properly designed and implemented can produce an effective and efficient composite structure. The experimental study aims to analyse the strength, stiffness and ductility of flexural strengthening composite bridge glued laminated timber beams-concrete plates using CFRP layers. The dimensions of the composite glued laminated timber beams 100/180 mm and concrete plate 75/300 mm with a length of 2,480 mm. The number of specimens is 3 composite glued laminated timber beams-concrete plate consisting of 1 test beam without CFRP reinforcement, 1 test beam with one layer CFRP reinforcement, and 1 test beam with three layer CFRP reinforcement. Experimental testing of flexural loads is done with two load points where each load is placed at 1/3 span length. The test results show that the strength of composite laminated timber beams glued - concrete plates BN; BL-1; BL-2 in a row 81.32; 82.82; 82.69 kN/mm; stiffness in a row 7.51; 8.22; 6.32 kN/mm and successive ductility of 16.67; 28.83; 20.21.
Online Access
Free
Resource Link
Less detail

High Performance CFRP-Timber-Concrete Laminated Composite Members

https://research.thinkwood.com/en/permalink/catalogue1698
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Balogh, Jeno
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Loading
Short-term
Laboratory Tests
Finite Element Model
Tension
CFRP
Failure Mode
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4352-4359
Summary
This paper deals with laminated timber-concrete (LTC) composite beam members, for applications in sustainable building structures, in which the interlayer connection is achieved with adhesives, similarly to the glued laminated timber beams, instead of the classically used shear connectors (e.g. mechanical connectors or notches). Only a small number of studies of this type of high-performance members are available. The strength and stiffness of the LTC under short-term static ramp-loading were studied on new and retrofit (joist-type) floor members, through laboratory tests and non-linear finite element modelling. In the initial tests the typical failure mode observed was the failure of the wood in tension. Consequently, a carbon fibre reinforced polymer (CFRP) layer was added to the tension side of the timber layer, forming a multi-composite member. The research results indicate that the structural performance in terms of efficiencies and strength for the LTC beams exceeds the corresponding performance of similar classical timber-concrete beams with shear connectors due to the different shear transfer and failure modes. By adding the CFRP reinforcement to the tension fibres of the timber layer, the failure mode changed again, allowing for further increase in strength and stiffness.
Online Access
Free
Resource Link
Less detail

Numerical Modelling of Glulam Beams Externally Reinforced with CFRP Plates

https://research.thinkwood.com/en/permalink/catalogue1624
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Glišovic, Ivan
Pavlovic, Marko
Stevanovic, Boško
Todorovic, Marija
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Behaviour
CFRP
Finite Element Model
Load Deflection
Stiffness
Load Carrying Capacity
Strain
Reinforcement
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2634-2641
Summary
Timber beams can effectively be reinforced using externally bonded fibre reinforced polymer (FRP) composites. This paper describes a nonlinear 3-dimensional finite element model which was developed in order to accurately simulate the bending behaviour of unreinforced and carbon FRP plate reinforced glulam beams. The model incorporates suitable constitutive relationship for each material and utilises anisotropic plasticity theory for timber in compression. Failure of beams was modelled based on the maximum stress criterion. The results of the finite element analysis showed a good agreement with experimental findings for load-deflection behaviour, stiffness, ultimate load carrying capacity and strain profile distribution of unreinforced and reinforced beams. The proposed model can be used to examine the effect of different geometries or materials on the mechanical performance of reinforced system.
Online Access
Free
Resource Link
Less detail

Performance of Glue-Laminated Beams from Malaysian Dark Red Meranti Timber

https://research.thinkwood.com/en/permalink/catalogue1822
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Prestressed Glulam Beams Reinforced with CFRP Bars

https://research.thinkwood.com/en/permalink/catalogue110
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Yang, Huifeng
Ju, Dongdong
Liu, Weiqing
Lu, Weidong
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Carbon Fiber Reinforced Polymer
Douglas-Fir
Pre-Stress
Reinforcement
Four Point Bending Test
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper describes an experimental test program and theoretical analysis which examines the reinforcing in flexure of glued laminated timber (glulam) beams using bonded-in carbon fiber reinforced polymer (CFRP) bars. A series of four-point bending tests were conducted till failure on unreinforced, passively reinforced and prestressed Douglas fir glulam beams in a simply-supported scheme. The focus of this research was to evaluate the reinforcing efficiency of both passively reinforced and prestressed beams. Test results showed that the flexural capacity of the reinforced, prestressed, prestressed & reinforced (bottom prestressed and top reinforced) beams greatly increased by 64.8%, 93.3% and 131%, respectively. While the maximum improvement of the bending stiffness reached 42.0%. Another important finding was that the extreme fiber tensile strain of timber beams at failure could be remarkably increased due to the presence of the tension reinforcement, which indicated it overcomes the effects of local defects and therefore the failure mode was changed from brittle tension failure to ductile compression failure. Based on the experimental results, a theoretical model was proposed to predict the flexural capacity of unreinforced, reinforced and prestressed timber beams, which was validated by the test data.
Online Access
Free
Resource Link
Less detail

Prestressed Glulam Beams Reinforced with CFRP Bars

https://research.thinkwood.com/en/permalink/catalogue2126
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

10 records – page 1 of 1.