Skip header and navigation

2 records – page 1 of 1.

Joint Professional Practice Guidelines: Encapsulated Mass Timber Construction up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue2772
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Architectural Institute of British Columbia (AIBC)
Engineers and Geoscientists British Columbia
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Acoustics
Structural
Design
Building Enclosure
Architecture
Quality Assurance
Building Code
Encapsulated Mass Timber Construction
Engineering
Fire Protection
Language
English
Research Status
Complete
Summary
These Joint Professional Practice Guidelines – Encapsulated Mass Timber Construction Up to 12 Storeys were jointly prepared by the Architectural Institute of British Columbia (AIBC) and Engineers and Geoscientists British Columbia. The AIBC and Engineers and Geoscientists BC regulate and govern the professions of architecture, engineering, and geoscience under the Architects Act and the Professional Governance Act. The AIBC and Engineers and Geoscientists BC each have a regulatory mandate to protect the public interest, which is met in part by setting and maintaining appropriate academic, experience, and professional practice standards. Engineering Professionals are required per Section 7.3.1 of the Bylaws - Professional Governance Act to have regard for applicable standards, policies, plans, and practices established by the government or by Engineers and Geoscientists BC, including professional practice guidelines. For Engineering Professionals, these professional practice guidelines clarify the expectations for professional practice, conduct, and competence when providing engineering services for EMTC buildings. For Architects, these guidelines provide important information and identify issues to be considered when providing architectural services for EMTC buildings. These guidelines deal with the performance of specific activities in a manner such that Architects and Engineering Professionals can meet their professional obligations under the Architects Act and the Professional Governance Act. These guidelines were developed in response to new classifications of building size and construction relative to occupancy introduced in the 2018 British Columbia Building Code (BCBC), under Division B, Article 3.2.2.48EMTC. Group C, up to 12 storeys, Sprinklered, and Article 3.2.2.57EMTC. Group D, up to 12 storeys, Sprinklered. These new classifications were introduced in Revision 2 of the 2018 BCBC on December 12, 2019 and in Amendment 12715 of the 2019 Vancouver Building By-law (VBBL) on July 1, 2020. Additionally, provisions related to Encapsulated Mass Timber Construction (EMTC) were introduced in Revision 1 of the 2018 British Columbia Fire Code (BCFC) on December 12, 2019. These guidelines were first published in 2021 to provide guidance on architectural and engineering considerations relating to these significant changes to the 2018 BCBC, the 2019 VBBL, and the 2018 BCFC. For Engineering Professionals, these guidelines are intended to clarify the expectations of professional practice, conduct, and competence when Engineering Professionals are engaged on an EMTC building. For Architects, these guidelines inform and support relevant competency standards of practice to be met when Architects are engaged on an EMTC building. As with all building and construction types, the EMTC-specific code provisions prescribe minimum requirements that must be met. The majority of EMTC of 7 to 12 storeys are considered High Buildings, and as such are subject to the BCBC, Subsection 3.2.6. Additional Requirements for High Buildings.
Online Access
Free
Resource Link
Less detail

Tall Wood Building Enclosures – A Race To the Top

https://research.thinkwood.com/en/permalink/catalogue2346
Year of Publication
2017
Topic
Design and Systems
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope
Author
Hubbs, Brian
Finch, Graham
Year of Publication
2017
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope
Topic
Design and Systems
Site Construction Management
Keywords
Prefabrication
Building Enclosure
Façade
Curtain Wall
Durability
Construction Time
Language
English
Conference
Canadian Conference on Building Science and Technology
Research Status
Complete
Summary
On tall wood buildings, mass timber elements including CLT, NLT, glulam, and other engineered components absolutely need to be protected from excessive wetting during construction. This requirement precludes the use of many conventional cladding systems unless the building is fully hoarded during construction. The building enclosure and façade of UBC Tallwood House consists of an innovative prefabricated steel stud rainscreen curtain-wall assembly that is pre-insulated, pre-clad, and has factory installed windows. Design of connections and air and water sealing of panel joints and interfaces was carefully considered given the tall wood structure they were designed to protect. While steel studs were utilized in the panelized structure, feasible curtain-wall designs were also developed and prototyped for wood-framing, CLT, and precast concrete as part of the project. Looking ahead, there will continue to be innovation in design and construction of fast and durable facades for taller wood buildings. New prefabricated panel designs incorporating CLT panels and connection technologies from unitized curtainwall systems are already being developed for the “next tallest” wood buildings in North America.
Online Access
Free
Resource Link
Less detail