Skip header and navigation

11 records – page 1 of 2.

Canadian Mass Timber Demonstration Projects Initiatives

https://research.thinkwood.com/en/permalink/catalogue2147
Year of Publication
2019
Topic
Market and Adoption
Application
Wood Building Systems

Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1895
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Seismic
Wind
Material
LVL (Laminated Veneer Lumber)
Application
Shafts and Chases
Author
Connolly, Thomas
Loss, Cristiano
Iqbal, Asif
Tannert, Thomas
Publisher
MDPI
Year of Publication
2018
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Shafts and Chases
Topic
Design and Systems
Environmental Impact
Seismic
Wind
Keywords
Student Residence
Inter-Storey Drift
Environmental Footprint
Building Codes
Research Status
Complete
Series
Buildings
Summary
The UBC Brock Commons building in Vancouver, which comprises of 18 stories and stands 53 m in height, was at the time of completion in 2016 the world’s tallest hybrid wood-based building. The building’s 17 stories of mass-timber superstructure, carrying all gravity loads, rest on a concrete podium with two concrete cores that act as both the wind and seismic lateral load-resisting systems. Whereas the construction of the concrete cores took fourteen weeks in time, the mass-timber superstructure took only ten weeks from initiation to completion. A substantial reduction in the project timeline could have been achieved if mass-timber had been used for the cores, leading to a further reduction of the building’s environmental footprint and potential cost savings. The objective of this research was to evaluate the possibility of designing the UBC Brock Commons building using mass-timber cores. The results from a validated numerical structural model indicate that applying a series of structural adjustments, that is, configuration and thickness of cores, solutions with mass-timber cores can meet the seismic and wind performance criteria as per the current National Building Code of Canada. Specifically, the findings suggest the adoption of laminated-veneer lumber cores with supplementary ‘C-shaped’ walls to reduce torsion and optimize section’s mechanical properties. Furthermore, a life cycle analysis showed the environmental benefit of these all-wood solutions.
Online Access
Free
Resource Link
Less detail

Fire Safety of Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue1866
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Organization
National Research Council of Canada
Publisher
Society of Wood Science and Technology
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Safety
Fire Protection
Fire Resistance
Performance Based Design
Building Codes
Research Status
Complete
Series
Wood and Fiber Science
Summary
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
Online Access
Free
Resource Link
Less detail

The Heavy Timber Buckling-Restrained Braced Frame as a Solution for Commercial Buildings in Regions of High Seismicity

https://research.thinkwood.com/en/permalink/catalogue1651
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Author
Blomgren, Hans-Erik
Koppitz, Jan-Peter
Díaz Valdés, Abel
Ko, Eric
Year of Publication
2016
Format
Conference Paper
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Lateral Load Resisting System
Mid-Rise
High-Rise
US
Building Codes
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3515-3524
Summary
Timber building construction has been traditionally utilized to reduce inertial demands in high seismic regions. Applications in the United States however, are often limited to low-rise buildings of light-wood construction with distributed load bearing shear walls. Recent advancements in timber technologies are pushing mass timber systems into larger commercial scale markets where steel and concrete systems dominate the landscape. In high seismic regions, mass timber buildings currently lack code-defined lateral force resisting systems. This paper presents a new lateral force resisting system concept, known as the Heavy Timber Buckling-Restrained Braced Frame. The system is conceived, although not limited, for application in mid and high-rise building timber construction, and is inspired by the unbonded steel brace technology today widely spread throughout Japan and the United States. In order to qualify the system for future implementation in building codes, the paper presents results from proof-of-concept component testing of a brace consisting of a steel core and a mechanically laminated glulam casing acting as the bucklingrestraint mechanism. As well, findings from a study for implementation at the building system level is provided in order to assess overall system performance, constructability, and detailing.
Online Access
Free
Resource Link
Less detail

Illustrated Guide for Designing Wood-Frame Buildings in Alberta to Meet the National Energy Code of Canada for Buildings

https://research.thinkwood.com/en/permalink/catalogue1917
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Format
Book/Guide
Application
Building Envelope
Topic
Design and Systems
Keywords
Building Codes
Energy Efficiency
Mid-Rise
Thermal
Research Status
Complete
Summary
This guide was developed by FPInnovations and its partners to assist in the design and construction of durable and energy-efficient wood-frame buildings in Alberta. The Province adopted the National Energy Code for Buildings 2011, as of November 1, 2016, in order to comply with the energy-efficiency requirements for large buildings (Part 3). It is now also possible, with new building regulations, to build wood structures with a maximum of six storeys or 18 m height in Alberta. This guide aims to provide solutions for the building envelope (enclosure) of Part 3 wood buildings, particularly five- and six-storey wood-frame buildings, to meet the prescriptive thermal requirements of the new energy code. A range of wood-based exterior wall and roof assemblies are covered, based on light wood frame or mass timber, and various thermal insulation materials are discussed. Effective R-values are calculated based on typical thermal insulation values of commonly used materials. This document also covers key considerations for building envelope design to maintain long-term durability in Alberta’s varied climate.
Online Access
Free
Resource Link
Less detail

Mass Timber in High-Rise Buildings: Modular Design and Construction; Permitting and Contracting Issues

https://research.thinkwood.com/en/permalink/catalogue2144
Year of Publication
2019
Topic
Market and Adoption
Application
Wood Building Systems
Author
Dorrah, Dalia
El-Diraby, Tamer
Year of Publication
2019
Format
Conference Paper
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Modular Construction
Building Codes
Conference
Modular and Offsite Construction Summit
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Sound Insulation Performance of Elevator Shaft Walls built with Nail-Laminated Timber Panels - Exploratory Tests and Preliminary Results

https://research.thinkwood.com/en/permalink/catalogue364
Year of Publication
2016
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Pirvu, Ciprian
Organization
FPInnovations
Year of Publication
2016
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Acoustics and Vibration
Keywords
Building Codes
Canada
Sound Insulation
Apparent Sound Insulation Class
Research Status
Complete
Summary
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building codes. Elevator shaft walls constructed with wood-based materials have the advantages of material compatibility, use of sustainable materials, and ease of construction. In this exploratory study, selected elevator shaft wall designs built with nail-laminated-timber (NLT) structural elements were tested to investigate their sound insulation performance because little is known about the sound insulation performance of such wall assemblies. The tests were carried out in an acoustic mock-up facility in accordance to standard requirements, and provide preliminary data on the sound insulation performance of elevator shaft walls built with NLT panels. Four different elevator shaft walls built with NLT panels were tested and their measured apparent sound insulation class (ASTC) ratings ranged from 18 to 39 depending on their construction details. Some of the reasons that may have contributed to the ASTC ratings obtained for the elevator shaft walls described in this report as well as recommendations for future designs were provided. It is recommended to continue improving the sound insulation of elevator shaft walls built with NLT panels to meet or exceed the minimum requirements in building codes.
Online Access
Free
Resource Link
Less detail

Structural Fire Design-Statement on the Design of Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue2398
Year of Publication
2019
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Testing R22+ Wood-Frame Walls for Hygrothermal Performance in the Vancouver Climate: Construction and Instrumentation

https://research.thinkwood.com/en/permalink/catalogue1920
Year of Publication
2019
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Energy Performance
Keywords
Building Codes
Hygrothermal Models
Durability
Design Tools
Research Status
Complete
Summary
This study aims to generate moisture performance data for several configurations of highly insulated woodframe walls meeting the RSI 3.85 (R22 eff) requirement for buildings up to six storeys in the City of Vancouver. The overarching goal is to identify and develop durable exterior wood-frame walls to assist in the design and construction of energy efficient buildings across the country. Wall panels, each measuring 1200 mm wide and 2400 mm tall, form portions of the exterior walls of a test hut located in the rear yard of the FPInnovations laboratory in Vancouver. Twelve wall panels in six types of wall assemblies are undergoing testing in this first phase. This report, first in a series on this study, documents the initial construction and instrumentation.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.