The UBC Brock Commons building in Vancouver, which comprises of 18 stories and stands 53 m in height, was at the time of completion in 2016 the world’s tallest hybrid wood-based building. The building’s 17 stories of mass-timber superstructure, carrying all gravity loads, rest on a concrete podium with two concrete cores that act as both the wind and seismic lateral load-resisting systems. Whereas the construction of the concrete cores took fourteen weeks in time, the mass-timber superstructure took only ten weeks from initiation to completion. A substantial reduction in the project timeline could have been achieved if mass-timber had been used for the cores, leading to a further reduction of the building’s environmental footprint and potential cost savings. The objective of this research was to evaluate the possibility of designing the UBC Brock Commons building using mass-timber cores. The results from a validated numerical structural model indicate that applying a series of structural adjustments, that is, configuration and thickness of cores, solutions with mass-timber cores can meet the seismic and wind performance criteria as per the current National Building Code of Canada. Specifically, the findings suggest the adoption of laminated-veneer lumber cores with supplementary ‘C-shaped’ walls to reduce torsion and optimize section’s mechanical properties. Furthermore, a life cycle analysis showed the environmental benefit of these all-wood solutions.
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
Timber building construction has been traditionally utilized to reduce inertial demands in high seismic regions. Applications in the United States however, are often limited to low-rise buildings of light-wood construction with distributed load bearing shear walls. Recent advancements in timber technologies are pushing mass timber systems into larger commercial scale markets where steel and concrete systems dominate the landscape. In high seismic regions, mass timber buildings currently lack code-defined lateral force resisting systems. This paper presents a new lateral force resisting system concept, known as the Heavy Timber Buckling-Restrained Braced Frame. The system is conceived, although not limited, for application in mid and high-rise building timber construction, and is inspired by the unbonded steel brace technology today widely spread throughout Japan and the United States. In order to qualify the system for future implementation in building codes, the paper presents results from proof-of-concept component testing of a brace consisting of a steel core and a mechanically laminated glulam casing acting as the bucklingrestraint mechanism. As well, findings from a study for implementation at the building system level is provided in order to assess overall system performance, constructability, and detailing.
This guide was developed by FPInnovations and its partners to assist in the design and construction of durable and energy-efficient wood-frame buildings in Alberta. The Province adopted the National Energy Code for Buildings 2011, as of November 1, 2016, in order to comply with the energy-efficiency requirements for large buildings (Part 3). It is now also possible, with new building regulations, to build wood structures with a maximum of six storeys or 18 m height in Alberta. This guide aims to provide solutions for the building envelope (enclosure) of Part 3 wood buildings, particularly five- and six-storey wood-frame buildings, to meet the prescriptive thermal requirements of the new energy code. A range of wood-based exterior wall and roof assemblies are covered, based on light wood frame or mass timber, and various thermal insulation materials are discussed. Effective R-values are calculated based on typical thermal insulation values of commonly used materials. This document also covers key considerations for building envelope design to maintain long-term durability in Alberta’s varied climate.
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building codes. Elevator shaft walls constructed with wood-based materials have the advantages of material compatibility, use of sustainable materials, and ease of construction.
In this exploratory study, selected elevator shaft wall designs built with nail-laminated-timber (NLT) structural elements were tested to investigate their sound insulation performance because little is known about the sound insulation performance of such wall assemblies. The tests were carried out in an acoustic mock-up facility in accordance to standard requirements, and provide preliminary data on the sound insulation performance of elevator shaft walls built with NLT panels.
Four different elevator shaft walls built with NLT panels were tested and their measured apparent sound insulation class (ASTC) ratings ranged from 18 to 39 depending on their construction details. Some of the reasons that may have contributed to the ASTC ratings obtained for the elevator shaft walls described in this report as well as recommendations for future designs were provided.
It is recommended to continue improving the sound insulation of elevator shaft walls built with NLT panels to meet or exceed the minimum requirements in building codes.
This study aims to generate moisture performance data for several configurations of highly insulated woodframe walls meeting the RSI 3.85 (R22 eff) requirement for buildings up to six storeys in the City of Vancouver. The overarching goal is to identify and develop durable exterior wood-frame walls to assist in the design and construction of energy efficient buildings across the country. Wall panels, each measuring 1200 mm wide and 2400 mm tall, form portions of the exterior walls of a test hut located in the rear yard of the FPInnovations laboratory in Vancouver. Twelve wall panels in six types of wall assemblies are undergoing testing in this first phase. This report, first in a series on this study, documents the initial construction and instrumentation.