Skip header and navigation

12 records – page 1 of 2.

CLT Feasibility Study: A Study of Alternative Construction Methods in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue1896
Year of Publication
2014
Topic
Design and Systems
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Floors
Walls

A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete

https://research.thinkwood.com/en/permalink/catalogue52
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Robertson, Adam
Lam, Frank
Cole, Raymond
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Energy Performance
Environmental Impact
Keywords
Concrete
Embodied Carbon
Life-Cycle Assessment
Mid-Rise
National Building Code of Canada
NBCC
North America
Office Buildings
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
Online Access
Free
Resource Link
Less detail

Design Example: Design of Stacked Multi-Storey Wood Shear Walls Using a Mechanics Based Approach

https://research.thinkwood.com/en/permalink/catalogue739
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Codes
National Building Code of Canada
Lateral Seismic Loads
Language
English
Research Status
Complete
Summary
Figure 1 shows a floor plan and elevation along with the preliminary shear wall locations for a sixstorey wood-frame building. It is assumed some preliminary calculations have been provided to determine the approximate length of wall required to resist t...
Online Access
Free
Resource Link
Less detail

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Development of a Canadian Fire-Resistance Design Method for Massive Wood Members

https://research.thinkwood.com/en/permalink/catalogue484
Year of Publication
2014
Topic
Design and Systems
Fire
Material
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Dagenais, Christian
Ranger, Lindsay
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Design and Systems
Fire
Keywords
National Building Code of Canada
Canada
Fire Resistance
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The fire-resistance rating of a building element in an assembly has traditionally been assessed by subjecting a replicate of that assembly to the standard fire-resistance test ULC S101 in Canada, ASTM E119 in the USA and ISO 834 in most other countries. ...
Online Access
Free
Resource Link
Less detail

Development of Southern Pine Cross-Laminated Timber for Building Code Acceptance

https://research.thinkwood.com/en/permalink/catalogue474
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Hindman, Daniel
Bouldin, John
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Keywords
Southern Pine
Fire Performance
Acoustical Performance
International Building Code
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The current interest and growth of cross laminated timber (CLT) products has spurred interest in the manufacture of CLTs in the United States. The purpose of this paper is to explore the development of CLT materials from southern pine lumber commonly ava...
Online Access
Free
Resource Link
Less detail

Evaluation of Buckling Strength of Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1576
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Nakajima, Shiro
Miyatake, Atsushi
Shibuwasa, Tatsuya
Araki, Yasuhiro
Shindo, Kenta
Haramiishi, Takeshi
Kudo, Yudai
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Japanese Building Code
Buckling Strength
Buckling Test
Buckling Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1707-1714
Summary
The Japanese Building Code provides formulas to calculate the buckling strength for structural lumbers and structural wooden engineered products such as glulam and LVL. The adaptability of these formulas against cross laminated timbers is discuss in this paper. To determining the buckling strength properties for cross laminated timbers a...
Online Access
Free
Resource Link
Less detail

Linear Dynamic Analysis for Wood Based Shear Walls and Podium Structures

https://research.thinkwood.com/en/permalink/catalogue740
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Podium Structures
Author
Ni, Chun
Newfield, Grant
Wang, Jasmine
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Podium Structures
Topic
Design and Systems
Mechanical Properties
Keywords
Deflection
Linear Dynamic Analysis
National Building Code of Canada
Stiffness
Floor Drifts
Language
English
Research Status
Complete
Summary
Utilizing Linear Dynamic Analysis (LDA) for designing steel and concrete structures has been common practice over the last 25 years. Once preliminary member sizes have been determined for either steel or concrete, building a model for LDA is generally easy as the member sizes and appropriate stiffness...
Online Access
Free
Resource Link
Less detail

The North American Product Standard for Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue760
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Yeh, Borjen
Gagnon, Sylvain
Williamson, Tom
Pirvu, Ciprian
Lum, Conroy
Kretschmann, David
Publisher
Forest Products Society
Year of Publication
2012
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Market and Adoption
Keywords
International Building Code
North America
Standards
Language
English
Research Status
Complete
Series
Wood Design Focus
Online Access
Free
Resource Link
Less detail

Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2374
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Fire
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application
Organization
GHL Consultants Ltd.
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application
Topic
Design and Systems
Market and Adoption
Fire
Keywords
Building Code
Education
School Buildings
Multi-Storey
Fire Test
Fire Safety
Technical Risk
Process Risk
Mass Timber
Language
English
Research Status
Complete
Summary
This report explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys. Three- and four-storey schools and larger floor areas in wood construction require an Alternative Solution. The report identifies key fire safety features offered by combustible construction materials including tested and currently widely available engineered mass timber products, such as glued-laminated timber and cross-laminated timber. A risk analysis identifies the risk areas defined by the objectives of the British Columbia Building Code (BCBC 2018) and evaluates the level of performance of the Building Code solutions for assembly occupancies vis-à-vis the level of performance offered by the proposed schools up to four storeys in building height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This report is closely related to the study Design Options for Three-and Four-Storey Wood School Buildings in British Columbia, which illustrates the range of possible timber construction approaches for school buildings that are up to four storeys in height.
Online Access
Free
Resource Link
Less detail

12 records – page 1 of 2.