Skip header and navigation

8 records – page 1 of 1.

Brock Commons Tallwood House, University of British Columbia: An Environmental Building Declaration According to EN 15978 Standard

https://research.thinkwood.com/en/permalink/catalogue2158
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems

Feasibility of Cross-Laminated Timber Cores for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1905
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases

Investigating the Performance of the Construction Process of an 18-storey Mass Timber Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue1269
Year of Publication
2017
Topic
General Information
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Kasbar, Mohamed
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
General Information
Market and Adoption
Keywords
Brock Commons
Construction
Efficiency of Construction
Language
English
Research Status
Complete
Summary
The use of mass timber in high rise construction is an innovation. Mass timber construction has influential benefits including a lower overall construction time, a lower environmental impact, the use of renewable resource and an improved aesthetics. Despite the mentioned benefits, mass timber is not the traditional material for low to mid-rise commercial, institutional and residential construction in Canada. This is partially due to the need to explore the efficiency of mass timber construction relative to traditional construction. Detailed quantitative documentation of successful construction projects assists organisations planning mass timber high-rise projects by understanding and quantifying the advantages to ensure the viability of the construction process. This research project aims to understand the performance of mass-timber construction in the context of a construction manager, particularly the time saved due to completion of structural and envelope systems early. The case study chosen for this thesis is the tallest mass timber hybrid building in the world: Tallwood House. The research team studied the project in a macro-level perspective to investigate the building elements as single entities. Moreover, a micro-level study focuses on the performance of every level of the following elements: mass timber structure, envelope cladding systems and cross-laminated timber drywall encapsulation. The macro-level study investigates: (1) The production rate of the various building elements, (2) The coordination between structural trades to build a heavily pre-fabricated building using a single crane, and (3) The labor efforts per discipline. Moreover, the micro-level study investigates: (4) The variability of productivity of all levels, (5) A statistical investigation of three factors on cross-laminated timber installation, (6) Schedule reliability of preliminary planned schedule relative to the construction schedule (actual progress), (7) Earned value analysis, and (8) Planned percent complete to study the reliability of weekly work plans relative to construction schedules. All metrics were validated by the senior project manager through a discussion and confirmation of the inputs, findings and conclusions drawn. The claimed contribution of this research is an advanced state of knowledge about mass timber by exploring the efficiency of the construction process.
Online Access
Free
Resource Link
Less detail

Lessons Learned from Life Cycle Assessment and Life Cycle Costing of Two Residential Towers at the University of British Columbia

https://research.thinkwood.com/en/permalink/catalogue1223
Year of Publication
2018
Topic
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Teshnizi, Zahra
Pilon, Angelique
Storey, Stefan
Lopez, Diana
Froese, Thomas
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Cost
Environmental Impact
Keywords
Life-Cycle Assessment
Life Cycle Costing
High-Rise
Residential
Brock Commons
Concrete
Language
English
Research Status
Complete
Series
Procedia CIRP
Summary
The University of British Columbia has an interest in incorporating life cycle environmental impacts and financial information into project planning, as well as research and teaching. As part of a tall wood building research program with the UBC Sustainability Initiative and Dept. of Civil Engineering, a comprehensive life cycle assessment (LCA) and life cycle costing (LCC) study was done of two student high-rise residential buildings, based on the result of whole building LCA done by Athena Sustainable Materials Institute and whole building LCC done by Sensible Building Science. These buildings are of similar design but Brock Commons Tallwood House has a hybrid mass-timber structure and Ponderosa Commons Cedar House has a more traditional concrete structure. This paper will include a brief overview of the research process, data collection, analysis, and key results. The paper will then focus on the main opportunities, challenges, and lessons learned from both the results of the LCA/LCC projects and the process of conducting the study.
Online Access
Free
Resource Link
Less detail

Moisture Performance and Vertical Movement Monitoring of Pre-Fabricated Cross-Laminated Timber: UBC Tallwood House

https://research.thinkwood.com/en/permalink/catalogue2276
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Structure Monitoring Technology Ltd.
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Moisture
Keywords
Monitoring
Vertical Movement
Brock Commons
Research Status
In Progress
Notes
Project contact is Gamal Mustapha at SMT Research Ltd.
Summary
This monitoring project evaluates the life cycle moisture performance of prefabricated CLT from manufacturing to installation into an 18-storey tall wood building.
Less detail

Quality Control and Quality Assurance in Hybrid Mass Timber High-Rise Construction: A Case Study of the Brock Commons

https://research.thinkwood.com/en/permalink/catalogue1272
Year of Publication
2018
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems
Author
Calderon, Francisco
Organization
University of British Columbia
Year of Publication
2018
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems
Topic
Site Construction Management
Keywords
Quality Control
Quality Assurance
Brock Commons
Reinforced Concrete
Concrete Core
Construction
Language
English
Research Status
Complete
Summary
Wood has seen a resurgence recently as a construction material driven by technological advances and a growing concern for the environment. Although an increasing amount of mass timber high-rises are being built all around the world, lack of information and outdated preconceptions are some of the obstacles that are keeping mass timber products from increasing their market share in high-rise construction. Academia and industry leaders must keep track of the progress that is being made and inform the general public as innovation and technological advances continue to take place. In this context, the University of British Columbia has recently completed the construction of the Brock Commons Tallwood House. This 18-story residence building employs two reinforced concrete cores and a mass timber structure composed of cross laminated timber panels, glued-laminated columns, and parallel strand lumber columns. With this, the building is currently the tallest wood building in the world and a testament to the suitability of engineered wood elements for high-rise construction. Aiming to address the lack of information surrounding mass timber high rise construction, this thesis documents the quality assurance (QA) and quality control (QC) practices that were put in place during the delivery of the building. The main objective of this research was to identify and present lessons learned from the application of these QA/QC practices. To do this, various QA/QC practices were identified and analyzed by reviewing the project specifications and other project documents, reviewing recognized industry standards, and interviewing various members of the project team. This study found a series of comprehensive and well-planned QA/QC practices that were put in place by the project team and that were appropriate to comply with the project requirements. This study concluded that most of these practices are replicable and advisable for future projects. The different QA/QC practices that were identified and the lessons learned from their application are presented in this thesis.
Online Access
Free
Resource Link
Less detail

Structural Behaviour of Point-Supported CLT Floor Systems

https://research.thinkwood.com/en/permalink/catalogue1476
Year of Publication
2016
Topic
Mechanical Properties
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Popovski, Marjan
Chen, Zhiyong
Gafner, Bernhard
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Acoustics and Vibration
Keywords
Brock Commons
Natural Frequency
Stiffness
Deformation
Load Carrying Capacity
Two-Way
Compression
Failure Mechanisms
Openings
Point-Supported
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
This paper presents an experimental investigation of the structural behaviour and dynamic characteristics of an innovative, double-span, point-supported Cross Laminated Timber (CLT) floor system for an 18-stroey woodhybrid student residence building at the University of British Columbia Campus in Vancouver, Canada. Eighteen CLT floor specimens with or without service openings were fabricated by three manufacturers and tested. The fundamental natural frequency, stiffness and deformability, load-carrying capacity, two-way action, compression perpendicular to grain at the supports, and the failure mechanism of the floor systems were investigated. In addition, the effect of openings in the floors was investigated along with the manufacturer-related properties of the CLT floors were examined. The tests gave an insight into the structural behaviour of this innovative floor system, provided test data that was used for calibration of the Finite Element Models of the building, and helped choose the right product for the floors.
Online Access
Free
Resource Link
Less detail

Structural Design, Approval, and Monitoring of a UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1252
Year of Publication
2017
Topic
Serviceability
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Tannert, Thomas
Moudgil, Ermanu
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Design and Systems
Keywords
Vertical Shrinkage
Horizontal Building Vibration
Structural Performance
Concrete Core
Brock Commons
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores containing vertical circulation provide the required lateral resistance. The timber system is comprised of cross-laminated timber panels, which are point supported on glued-laminated timber columns and steel connections between levels. In addition to providing more than 400 beds for students, the building will serve as an academic site to monitor and study its structural performance, specifically horizontal building vibration and vertical shrinkage considerations. We present the challenges relating to the approval process of the building and discuss building code compliance issues.
Online Access
Payment Required
Resource Link
Less detail

8 records – page 1 of 1.