Skip header and navigation

4 records – page 1 of 1.

Buckling-restrained Braced Frames for Seismically Resilient Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2571
Topic
Seismic
Wind
Application
Frames
Organization
University of Utah
Country of Publication
United States
Application
Frames
Topic
Seismic
Wind
Keywords
Buckling Restrained Brace Frames
Resilient Building Design
Mass Timber
Energy Dissipation
Monitoring
Research Status
In Progress
Notes
Project contact is Chris Pantelides at the University of Utah
Summary
A mass timber buckling-restrained braced frame is proposed to enhance the seismic resilience of mass timber buildings. Constructed using wood generated from the national forest system, the mass timber buckling-restrained brace will be integrated with a mass timber frame for structural energy dissipation under seismic or wind loads. The team will improve and optimize the design of structural components based on feedback from a real-time health monitoring system. Outcomes include guidelines for a lateral force resisting system of mass timber buildings in high seismic or wind regions.
Less detail

Development of Timber Buckling-Restrained Braces for Mass Timber Braced Frames

https://research.thinkwood.com/en/permalink/catalogue2199
Year of Publication
2019
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Author
Murphy, Colton
Pantelides, Chris
Blomgren, Hans-Erik
Rammer, Douglas
Year of Publication
2019
Country of Publication
United States
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Topic
Seismic
Keywords
Lateral Force Resisting System
Buckling Restrained Brace Frames
Language
English
Conference
INTER
Research Status
Complete
Summary
Buckling Restrained Brace Frames (BRBF) are a proven and reliable method to provide an efficient lateral force resisting system for new and existing structures in earthquake prone regions. The fuse-type elements in this system facilitate stable energy dissipation at large load deformation levels. Currently, the new trend towards mass timber vertical...
Online Access
Free
Resource Link
Less detail

Development of Timber Buckling Restrained Braces for Mass Timber Braced Frames

https://research.thinkwood.com/en/permalink/catalogue2544
Year of Publication
2019
Topic
Seismic
Design and Systems
Application
Frames
Author
Murphy, Colton
Pantelides, Chris
Blomgren, Hans-Erik
Rammer, Douglas
Year of Publication
2019
Country of Publication
United States
Format
Conference Paper
Application
Frames
Topic
Seismic
Design and Systems
Keywords
Brace
Buckling
Damping
Fuse
Seismic
Structure
Timber
Language
English
Conference
International Network on Timber Engineering Research
Research Status
Complete
Summary
Buckling Restrained Brace Frames (BRBF) are a proven and reliable method to provide an efficient lateral force resisting system for new and existing structures in earthquake prone regions. The fuse-type elements in this system facilitate stable energy dissipation at large load deformation levels. Currently, the new trend towards mass timber vertical structures creates a need for a lightweight compatible lateral force resisting system. A Buckling Restrained Brace (BRB) component is possible to construct and feasible to implement when combining a steel core with a mass timber casing herein named the Timber-Buckling Restrained Brace (T-BRB). T-BRBs when combined with mass timber beam and column elements can create a system that will have advantages over the current steel framed BRBF system when considering recyclability, sustainability, framing compatibility, and performance. This paper presents findings on small scale testing of candidate engineered wood products for the T-BRB casing and testing of six full scale 12 ft long 60 kip braces according to code prescribed loading protocols and acceptance criteria.
Online Access
Free
Resource Link
Less detail

Discrete Bracing of Timber Beams Subjected to Gravity Loads

https://research.thinkwood.com/en/permalink/catalogue683
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Klasson, Anders
Crocetti, Roberto
Hansson, Eva
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Gravity Loads
Buckling Strength
Brace Forces
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Slender timber beams subjected to gravity loads may buckle in the out-of-plane direction. Normally, the same bracing system that is used to prevent lateral movements of the beams, caused by external transversal loading, also serve to increase the buckling strength of the beams. For the idealized case of a perfectly straight beam with full-bracing there is no force in the braces even at buckling because there is no displacement at the brace points. However, in real beams brace forces do develop during loading. This paper describes experimental and analytical studies performed on slender glulam beams subjected to gravity loads laterally stiffened by means of discrete bracing. In particular, the influence of relevant parameters such as i) brace stiffness, ii) brace position, iii) shape and magnitude of initial imperfections on the brace force were investigated.
Online Access
Free
Resource Link
Less detail