Skip header and navigation

10 records – page 1 of 1.

Buckling of Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1615
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Perret, Olivier
Douthe, Cyril
Lebée, Arthur
Sab, Karam
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Linear Buckling
Finite Element
Buckling Loads
Boundary Conditions
Bending-Gradient theory
Transverse Shear Effects
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2360-2367
Summary
In this paper, the linear buckling of Cross Laminated Timber walls is investigated. A 3D numerical study using finite-elements is presented for several Cross Laminated Timber geometries, ply configurations and boundary conditions. First, it is shown that critical buckling loads are close to the material failure load which proves the necessity of a design model for the buckling of Cross Laminated Timber panels. Second, through a comparison between soft simple support boundary conditions and conventional hard simple support conditions, it is shown that this distinction could be taken into account for designing timber structures depending on the accuracy needed. Third, several plate models, particularly the Bending-Gradient theory, are compared to these 3D reference results. It is observed that for varying plate geometries and arrangements, the Bending-Gradient theory predicts more precisely the critical load of CLT panels than classical lamination and first-order shear deformation theories. Finally, it is demonstrated that one of the suggested projections of the Bending-Gradient on a Reissner-Mindlin model gives very accurate results and could favorably allow the development of engineering recommendations to estimate properly transverse shear effects.
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of LVL-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue315
Year of Publication
2015
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Abd. Ghafar, Nor
Organization
University of Canterbury
Year of Publication
2015
Country of Publication
New Zealand
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Dynamic Behaviour
Natural Frequency
Mode shape
Electrodynamic Shaker
Boundary Conditions
Language
English
Research Status
Complete
Summary
This research focuses on the dynamic behaviour of long span LCC flooring systems. Experimental testing and finite element modelling was used to determine the dynamic behaviour, with particular regard to the natural frequency, fn and mode shape of an LCC floor. Both the experimental results and the finite element analyses agreed and showed that increased stiffness increased the natural frequency of the floor, and the boundary conditions influenced the dynamic behaviour of the LCC floor. Providing more restraint increased the stiffness of the floor system. The connectors' stiffness did not influence the dynamic performance of the floor. The research showed that a 8 m LCC long span floor can be constructed using LVL joists of between 300 mm to 400 mm depth with a concrete thickness of 65 mm for the longer spans, and joists of between 150 mm to 240 mm depth in conjunction with a concrete topping thickness of 100 mm for the shorter spans.
Online Access
Free
Resource Link
Less detail

Effect of Rod-to-Grain Angle on Capacity and Stiffness of Axially and Laterally Loaded Long Threaded Rods in Timber Joints

https://research.thinkwood.com/en/permalink/catalogue1371
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Cepelka, Martin
Arne Malo, Kjell
Stamatopoulos, Haris
Publisher
Springer Berlin Heidelberg
Year of Publication
2018
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Threaded Rods
Axial Loads
Lateral Loads
Rod-to-Grain
Joints
Boundary Conditions
Load-to-Rod
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
Long threaded rods have recently been widely used as a reinforcement of glued laminated timber in perpendicular to the grain direction. The recent research has thus focused mainly on the withdrawal properties of the threaded rods in the axial direction. Utilizing their large withdrawal stiffness and strength, the threaded rods can also effectively be used as connectors in moment resisting timber joints. Yet, in joints, the threaded rods are often imposed to a non-axial loading, due to inclination of the rod axis to the grain as well as loading direction different from the rod axis. No design models are currently available for the combined axial and lateral loading of the threaded rods. In the present work, the effects of the rod-to-grain and load-to-rod angles on capacity and stiffness of the threaded rods are investigated by use of experiments and finite element models. Based on those, analytical expressions for determining stiffness and capacity of axially and laterally loaded threaded rods are proposed, intended as a basis for practical joint design. Furthermore, effect of various boundary conditions applied at the rod-ends is studied.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Investigation on the Shear Strength of Glulam

https://research.thinkwood.com/en/permalink/catalogue2237
Year of Publication
2010
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)

Heat Transfer Through Mass Timber Connections

https://research.thinkwood.com/en/permalink/catalogue1769
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Author
Lawton, Andrea
Emberley, Richard
Torero, José
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Fire
Keywords
Heat Transfer
Boundary Conditions
Finite Element Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5284-5293
Summary
The advance in mass timber products has allowed buildings to be revolutionised. Medium rise buildings can utilise these panels as the main structural components achieving suitable strength and rigidity. Structural connections often pose the weakest element in timber construction...
Online Access
Free
Resource Link
Less detail

Influence of Boundary Conditions in Modal Testing on Evaluated Elastic Properties of Mass Timber Panel

https://research.thinkwood.com/en/permalink/catalogue283
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Niederwestberg, Jan
Zhou, Jianhui
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Keywords
Modal Testing
Boundary Conditions
Elastic Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross laminated timber (CLT) has the potential to play a major role in timber construction as floor and wall systems. In order to meet specific design needs and to make the use of CLT more effective, property evaluation of individual CLT panels is desirable. Static tests are time-consuming and therefore costly, and for massive products such as CLT practically impossible to implement. Modal testing offers a fast and more practical tool for the property evaluation of CLT and timber panels in general. This paper presents a comparison of different boundary conditions in modal testing in terms of accuracy, calculation effort and practicality. Single-layer timber panels as well as scaled CLT panels were fabricated. Three elastic properties of the panels were evaluated using modal testing methods with different boundary conditions (BCs). The results were compared with results from static test.
Online Access
Free
Resource Link
Less detail

Radiation Efficiency Of Cross Laminated Timber Panels By Finite Element Modelling

https://research.thinkwood.com/en/permalink/catalogue2422
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Zhou, Jianhui
Publisher
Canadian Acoustical Association
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element Modelling
Abaqus
Sound Radiation Efficiency
Boundary Conditions
Language
English
Research Status
Complete
Series
Journal of the Canadian Acoustical Association
Online Access
Free
Resource Link
Less detail

The Use of Cross Laminated Timber for Long Span Flooring in Commercial Buildings

https://research.thinkwood.com/en/permalink/catalogue1739
Year of Publication
2016
Topic
Acoustics and Vibration
Serviceability
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Lewis, Kirsten
Basaglia, Bella
Shrestha, Rijun
Crews, Keith
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Connections
Keywords
Long Span
Australia
New Zealand
Transverse Stiffness
Vibration Performance
Boundary Conditions
Numerical Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4845-4853
Summary
Long span timber floor solutions have demonstrated their potential to compete with concrete and steel construction for multi-storey commercial buildings. Due to the high strength-to-weight ratio of timber, serviceable vibration performance is a critical structural design issue for long spans. This project investigates the vibration...
Online Access
Free
Resource Link
Less detail

Vibrational Behaviour of Cross Laminated Timber Floors in Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue1738
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Zimmer, Severin
Augustin, Manfred
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Boundary Conditions
Serviceability Limit State
Elastomers
Frequency
In Situ
Laboratory Tests
Residential
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4835-4844
Summary
This paper will discuss the relevancy of different boundary conditions that relates to the dynamic behaviour of CLT floors to show the opportunities of adopting the findings for the verification of the serviceability limit state. Based on a literature research and measurements in the laboratory and in situ in different objects the evaluated...
Online Access
Free
Resource Link
Less detail

Vibration Properties of a Timber Floor Assessed in Laboratory and During Construction

https://research.thinkwood.com/en/permalink/catalogue488
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Jarnerö, Kirsi
Brandt, Anders
Olsson, Anders
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Damping Ratios
Eurocode
Mode shape
Natural Frequency
Prefabrication
Boundary Conditions
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
In the present work the change in natural frequencies, damping and mode shapes of a prefabricated timber floor element have been investigated when it was integrated into a building structure. The timber floor element was first subjected to modal testing in laboratory with ungrounded and simply supported boundary conditions, and then in situ at different stages of building construction. The first five natural frequencies, damping ratios and mode shapes of the floor element and the entire floor were extracted and analysed. It may be concluded that the major change in natural frequencies occur as the floor element is coupled to the adjacent elements and when partitions are built in the studied room, the largest effect is on those modes of vibration that largely are constrained in their movement. The in situ conditions have a great influence on the damping, which depends on the damping characteristics of the supports, but also on the fact that the floor is integrated into the building and interacts with it. There is a slight increase of damping in the floor over the different construction stages and the damping values seem to decrease with ascending mode order.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.