Skip header and navigation

Refine Results By

204 records – page 1 of 21.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Language
English
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Online Access
Free
Resource Link
Less detail

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Country of Publication
Germany
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Language
English
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Proposed Vibration-Controlled Design Criterion for Supporting Beams

https://research.thinkwood.com/en/permalink/catalogue1178
Year of Publication
2018
Topic
Acoustics and Vibration
Mechanical Properties
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Keywords
Floor Supporting Beam
Bending Stiffness
Language
English
Research Status
Complete
Summary
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible supporting beams can be solved through proper design of the supporting beams. However, there is currently no criterion set for the minimum requirement for floor supporting beam stiffness to ensure the beam is rigid enough. Designers’ current practice is to use the uniform load deflection criteria specified in the code for designing the supporting beams. This criterion is based on certain ratios of the floor span (e.g. L/360, L/480 etc.). The disadvantage of this approach is that it allows larger deflections for longer-span beams than for shorter beams. This means that engineers have to use their experience and judgement to select a proper ratio, particularly for the long-span beams. Therefore, a better vibration-controlled design criterion for supporting beams is needed. It is recommended to further verify the ruggedness of the proposed stiffness criterion for floor supporting beams using new field supporting beam data whenever they become available.
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Carpentieri, Gerardo
Tornabene, Francesco
Ascione, Luigi
Fraternalia, Fernando
Publisher
ScienceDirect
Year of Publication
2014
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Dynamic Behavior
Mechanical Theory
Finite Element Model
Bending
Shear
Deformation
Language
English
Research Status
Complete
Series
Journal of Sound and Vibration
Summary
We model the dynamic behavior of laminated curved beams on the assumption that the different layers of such structures are perfectly bonded at the interface and can show different flexural rotations from one another. We formulate a mechanical theory and a finite element model accounting for bending, shear, warping and extensional deformation modes, as well as radial, tangential and rotary inertias. The main novelty of the proposed theory consists of a generalization of layer-wise displacement approaches available in literature to the dynamics of beams with finite curvature. The work includes some numerical results related to the free vibration of laminated arches and showing different support conditions and aspect ratios to establish comparisons with different theories in the literature. We observe that an accurate mechanical modeling of curved laminated beams is crucial for correct estimation of the eigenfrequencies and eigenmodes of such structures within a 1D framework.
Online Access
Free
Resource Link
Less detail

Analysis of Mechanical Properties of Cross-Laminated Timber (CLT) with Plywood using Korean Larch

https://research.thinkwood.com/en/permalink/catalogue1806
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Language
English
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

An Experimental Study on Buckling Strength with Laminated Veneer Lumber of Three Wood Species

https://research.thinkwood.com/en/permalink/catalogue1575
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Kambe, Wataru
Nakamura, Madoka
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Japanese Larch
Japanese Cypress
Japanese Cedar
Compression Test
Deflection
Strain
Buckling Strength
Slenderness Ratio
Bending Deflection
Maximum Strength
Yield Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1698-1706
Summary
In the past study, we conducted compression tests with laminated veneer lumber of Japanese Larch. We observed the deflection and strain behaviour. As a result we could evaluate the bucking strength with Euler’s equation and Tetmajer’s method. For structural design we should expand the versatility of that method. Three wood species for structural members would be selected for these tests. Those were Japanese larch, Japanese cypress and Japanese cedar. For the test parameter, we set the 8types of slenderness ratio for the compression test and we conducted monotonic compression tests with pin-supported on both edges. For the mechanical properties we conducted compression tests with short column members and got yield compression for those materials. In the compression tests, we could see the bending deflection. We would get the ratio the maximum strength and yield strength for distinguish the limited slenderness ratio. As a result it was cleared that the limit slenderness ratio of these wood species was 100. And we could confirm that the Tetmajer’s method is useful for evaluation the yield strength.
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Beam-to-Beam Moment Resisting Connection

https://research.thinkwood.com/en/permalink/catalogue1581
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kusumoto, Shigeharu
Shioya, Shinichi
Kawabe, Ryosuke
Inomoto, Kotaro
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Bars
Epoxy
Beam-to-Beam
Four Point Bending Test
Short-term
Long-term
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1791-1798
Summary
Hybrid composite glulam timber reinforced using deformed steel bars and epoxy resin adhesive (RGTSB), was significantly developed in Kagoshima University. In this paper, a beam-to-beam connection for RGTSB and experimental data on the connection are presented. Two 2:3-scaled simply-supported beams under four-point flexural bending in short-term loading, connection elements under short and long-term tension loading were tested. The connection for RGTSB beam performed on bending behaviour such as non-connection RGTSB beam, especially better on ductility.
Online Access
Free
Resource Link
Less detail

The Applicability of I-214 Hybrid Poplar as Cross-Laminated Timber Raw Material

https://research.thinkwood.com/en/permalink/catalogue1132
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Markó, Gábor
Bejó, László
Takáts, Péter
Year of Publication
2015
Country of Publication
Hungary
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Poplar
Bending Test
Polyurethane
MOE
Low-Grade
Language
Hungarian
Research Status
Complete
Series
Faipar
ISSN
2064-9231
Summary
Cross-Laminated Timber (CLT) is a relatively new construction material that has not gained popularity in Hungary yet. Producing such building elements using Hungarian raw materials may help to establish this technique. The purpose of our research was to examine the possibility of producing CLT using Hungarian I-214 hybrid poplar. One three-layer panel was produced using Hungarian hybrid polar and polyurethane resin, and tested in bending. The MOR of the poplar CLT was found to be comparable to low-grade softwood CLT, but the MOE was lower than the requirement. Poplar raw material may be suitable for CLT production by selecting higher grade raw material using nondestructive testing, or as a secondary raw material mixed in with softwood.
Online Access
Free
Resource Link
Less detail

Application of Quasi-Brittle Material Model for Analysis of Timber Members

https://research.thinkwood.com/en/permalink/catalogue925
Year of Publication
2014
Material
Solid-sawn Heavy Timber
Author
Khorsandnia, Nima
Crews, Keith
Publisher
Taylor&Francis Online
Year of Publication
2014
Country of Publication
United Kingdom
Format
Journal Article
Material
Solid-sawn Heavy Timber
Keywords
ultimate load
Finite Element Model
Load-Deflection Response
Failure Load
Four Point Bending Test
Language
English
Research Status
Complete
Series
Australian Journal of Structural Engineering
Summary
Over the last two decades many constitutive models with different degrees of accuracy have been developed for analysis of sawn timber and engineered wood products. However, most of the existing models for analysis of timber members are not particularly practical to implement, owing to the large number of material properties (and associated testing) required for calibration of the constitutive law. In order to overcome this limitation, this paper presents details of 1D, 2D and 3D non-linear fi nite element (FE) models that take advantage of a quasi-brittle material model, requiring a minimum number of material properties to capture the load-defl ection response and failure load of timber beams under 4-point bending. In order to validate the model, four tapered timber piles with circular cross-section (two plains and two retrofi tted with steel jacket) were tested and analysed with the proposed 3D FE modelling technique; and a good correlation between experimentally observed and numerically captured ultimate load was observed. Consequently, it was concluded that the developed FE models used in conjunction with the quasi-brittle constitutive law were able to adequately capture the failure load and load-defl ection response of the fl exural timber elements.
Online Access
Free
Resource Link
Less detail

204 records – page 1 of 21.