Skip header and navigation

Refine Results By

227 records – page 1 of 23.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Summary
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an oven with a target sample temperature of 204°C. The deformation (creep) was examined as a function of time. It was found that samples fingerjointed with melamine formaldehyde and phenol resorcinol formaldehyde adhesives had the same creep behavior as solid wood. One-component polyurethane and polyvinyl acetate adhesives could not maintain the load at the target temperature measured middepth of the sample, and several different types of creep behavior were observed before failure. This method showed that the creep performance of the onecomponent adhesives may be quite different than the performance from short-term load deformation curves collected at high temperatures. The importance of creep performance of adhesives in the fire resistance of engineered wood is discussed.
Online Access
Free
Resource Link
Less detail

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Summary
Cross Laminated Timber (CLT) panels are more and more common in timber construction. When submitted to out-of-plane loads, they can be considered as multi-layer plates with anisotropic behaviour. Their main structural issue is the low transverse shear strength of cross layers which leads to rolling shear failure. In addition the fabrication process can include or not lateral boards’ gluing. The resulting discontinuities can be considered as weakly heterogeneous and influence the mechanical response. Moreover the timber construction market requires new technical solutions for CLT, like periodic voids within the panel. This solution leads to lighter and more thermally efficient floors. However, the spaced voids between boards increase the heterogeneity of the panel and therefore the complexity of stresses’ distribution.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Proposed Vibration-Controlled Design Criterion for Supporting Beams

https://research.thinkwood.com/en/permalink/catalogue1178
Year of Publication
2018
Topic
Acoustics and Vibration
Mechanical Properties
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2018
Format
Report
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Keywords
Floor Supporting Beam
Bending Stiffness
Research Status
Complete
Summary
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible supporting beams can be solved through proper design of the supporting beams. However, there is currently no criterion set for the minimum requirement for floor supporting beam stiffness to ensure the beam is rigid enough. Designers’ current practice is to use the uniform load deflection criteria specified in the code for designing the supporting beams. This criterion is based on certain ratios of the floor span (e.g. L/360, L/480 etc.). The disadvantage of this approach is that it allows larger deflections for longer-span beams than for shorter beams. This means that engineers have to use their experience and judgement to select a proper ratio, particularly for the long-span beams. Therefore, a better vibration-controlled design criterion for supporting beams is needed. It is recommended to further verify the ruggedness of the proposed stiffness criterion for floor supporting beams using new field supporting beam data whenever they become available.
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Carpentieri, Gerardo
Tornabene, Francesco
Ascione, Luigi
Fraternalia, Fernando
Publisher
ScienceDirect
Year of Publication
2014
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Dynamic Behavior
Mechanical Theory
Finite Element Model
Bending
Shear
Deformation
Research Status
Complete
Series
Journal of Sound and Vibration
Summary
We model the dynamic behavior of laminated curved beams on the assumption that the different layers of such structures are perfectly bonded at the interface and can show different flexural rotations from one another. We formulate a mechanical theory and a finite element model accounting for bending, shear, warping and extensional deformation modes, as well as radial, tangential and rotary inertias. The main novelty of the proposed theory consists of a generalization of layer-wise displacement approaches available in literature to the dynamics of beams with finite curvature. The work includes some numerical results related to the free vibration of laminated arches and showing different support conditions and aspect ratios to establish comparisons with different theories in the literature. We observe that an accurate mechanical modeling of curved laminated beams is crucial for correct estimation of the eigenfrequencies and eigenmodes of such structures within a 1D framework.
Online Access
Free
Resource Link
Less detail

Analysis of Mechanical Properties of Cross-Laminated Timber (CLT) with Plywood using Korean Larch

https://research.thinkwood.com/en/permalink/catalogue1806
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Choi, Chul
Kojima, Erina
Kim, Kyung-Jung
Yamasaki, Mariko
Sasaki, Yasutoshi
Kang, Seog-Goo
Publisher
North Carolina State University
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Korean Larch
Bending Strength
Hybrid Wooden-Core Laminated Timber (HWLT)
Lamina
Compression
Tensile Strength
Korea
In-Plate Shear Failure
Research Status
Complete
Series
BioResources
Summary
The bending strength of hybrid wooden-core laminated timber (HWLT), a composite material made from existing cross-laminated timber (CLT) and plywood, was analyzed. Using plywood makes it possible to decrease the bending strength of the starting material. Korea Larch (Larix kaempferi Carr.) was used as plywood because of its popularity in Korea. To analyze HWLT’s bending properties, each component (lamina, plywood) was tested for bending, compression, and tensile strengths. The results showed that the HWLT’s bending strength depended on the plywood’s number of plies. With an increased number of plies, plywood’s bending strength decreased, and also HWLT’s bending strength decreased. Most of the failure showed in-plate shear failure of plywood. This result meant that use of reinforced plywood made it possible to increase HWLT’s bending strength for structural material.
Online Access
Free
Resource Link
Less detail

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

Analytical and experimental evaluation of the effect of knots on rolling shear properties of cross-laminated timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1942
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Cao, Yawei
Organization
Mississippi State University
Year of Publication
2019
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Rolling Shear
Southern Pine
Center Point Bending Test
Two-Plate Shear Test
Knots
Strength
Failure Mechanism
Research Status
Complete
Summary
Knots are usually regarded as defects when grading lumber. In order to evaluate a member under out-of-plane loading, shear strength is one of the major mechanical properties, specifically, rolling shear (RS) strength is one of the critical mechanical properties of Cross-Laminated Timber (CLT), which determines the flexural strength of CLT under short-span bending loads. Lower grade lumber with a higher percentage of knots is recommended to be utilized for the cross-layer laminations which are mainly responsible for resisting shear stresses. Firstly, shear tests were performed in order to evaluate the effect of knots on longitudinal shear strength using shear blocks. After that, the effect of knots on the RS strength of 3-ply southern yellow pine CLT were investigated by experimental tests and an analytical model. Center-point bending tests with a span-to-depth ratio of 6 and two-plate shear tests with a loading angle of 14° were conducted on six CLT configurations composed of different types of cross layer laminations: clear flatsawn lumber with/without pith, lumber with sound knots with/without pith, and lumber with decayed knots with/without pith. The shear analogy method was implemented to evaluate the RS strength values from the bending test results, which were also compared against the results from the two-plate shear tests. It was found that: (1) The shear blocks containing sound knots had higher shear strength than matched clear shear blocks, the shear blocks containing unsound knots had lower shear strength than the matched clear shear blocks. (2) CLT specimens with cross-layer laminations with either sound knots or decayed knots had higher RS strength. (3) In general, the shear analogy method underestimated the RS strength of CLT specimens containing knots and pith.
Online Access
Free
Resource Link
Less detail

Analytical Procedure for Timber-Concrete Composite (TCC) System with Mechanical Connectors

https://research.thinkwood.com/en/permalink/catalogue3119
Year of Publication
2022
Topic
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Author
Mirdad, Md Abdul Hamid
Khan, Rafid
Chui, Ying Hei
Organization
University of Illinois at Urbana-Champaign
University of Alberta
Editor
Tullini, Nerio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Mechanical Connectors
Progressive Yielding
Effective Bending Stiffness
Deflection
Vibration
Research Status
Complete
Series
Buildings
Summary
In the construction of modern multi-storey mass timber structures, a composite floor system commonly specified by structural engineers is the timber–concrete composite (TCC) system, where a mass timber beam or mass timber panel (MTP) is connected to a concrete slab with mechanical connectors. The design of TCC floor systems has not been addressed in timber design standards due to a lack of suitable analytical models for predicting the serviceability and safety performance of these systems. Moreover, the interlayer connection properties have a large influence on the structural performance of a TCC system. These connection properties are often generated by testing. In this paper, an analytical approach for designing a TCC floor system is proposed that incorporates connection models to predict connection properties from basic connection component properties such as embedment and withdrawal strength/stiffness of the connector, thereby circumventing the need to perform connection tests. The analytical approach leads to the calculation of effective bending stiffness, forces in the connectors, and extreme stresses in concrete and timber of the TCC system, and can be used in design to evaluate allowable floor spans under specific design loads and criteria. An extensive parametric analysis was also conducted following the analytical procedure to investigate the TCC connection and system behaviour. It was observed that the screw spacing and timber thickness remain the most important parameters which significantly influence the TCC system behaviour.
Online Access
Free
Resource Link
Less detail

An Experimental and Analytical Study on the Bending Performance of CFRP-Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue2972
Year of Publication
2022
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
He, Minjuan
Wang, Yuxuan
Li, Zheng
Zhou, Lina
Tong, Yichang
Sun, Xiaofeng
Organization
Tongji University
University of Victoria
Editor
Tam, Lik-ho
Publisher
Frontiers
Year of Publication
2022
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
CFRP Sheet
Four-point Bending Test
Numerical Model
Theoretical Analysis
Research Status
Complete
Series
Frontiers in Materials
Summary
The fiber-reinforced polymer is one kind of composite material made of synthetic fiber and resin, which has attracted research interests for the reinforcement of timber elements. In this study, 18 glued-laminated (glulam) beams, unreinforced or reinforced with internally embedded carbon fiber–reinforced polymer (CFRP) sheets, were tested under four-point bending loads. For the reinforced glulam beams, the influences of the strengthening ratio, the modulus of elasticity of the CFRP, and the CFRP arrangement on their bending performance were experimentally investigated. Subsequently, a finite element model developed was verified with the experimental results; furthermore, a general theoretical model considering the typical tensile failure mode was employed to predict the bending–resisting capacities of the reinforced glulam beams. It is found that the reinforced glulam beams are featured with relatively ductile bending failure, compared to the brittle tensile failure of the unreinforced ones. Besides, the compressive properties of the uppermost grain of the glulam can be fully utilized in the CFRP-reinforced beams. For the beams with a 0.040% strengthening ratio, the bending–resisting capacity and the maximum deflection can be enhanced approximately by 6.51 and 12.02%, respectively. The difference between the experimental results and the numerical results and that between the experimental results and analytical results are within 20 and 10%, respectively.
Online Access
Free
Resource Link
Less detail

An experimental and modeling study on apparent bending moduli of cross-laminated bamboo and timber (CLBT) in orthogonal strength directions

https://research.thinkwood.com/en/permalink/catalogue2914
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Hao
Wang, Brad
Wang, Libin
Wei, Yang
Organization
Nanjing Forestry University
Southwest Forestry University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending Performance
Modeling Analysis
Cross-laminated Bamboo and Timber
Research Status
Complete
Series
Case Study in Construction Materials
Summary
In this paper, the bending properties of a 3-ply cross-laminated bamboo and timber (CLBT), prefabricated with the bamboo mat-curtain panel and hem-fir lumber, were examined in the major and minor strength directions, and a 3-ply hem-fir cross-laminated timber (CLT) was taken as a control group. The analytical model for the sum of the orthogonal apparent bending moduli with the two types of layer classifications were proposed, and the two kinds of contribution models were developed to analyze the apparent bending modulus variation behavior of the CLBT and CLT panels in the major and minor strength directions. The experimental results showed that since the CLBT group had more internal orthogonal structures, its difference in the bending properties between the major and minor strength directions was lower than that of the CLT group. Furthermore, the proposed contribution models quantitatively analyzed the relationship between the apparent bending moduli of the CLBT and CLT panels and the corresponding composition layer characteristics. The contribution model to characterize the apparent bending modulus in major and minor strength directions demonstrated good agreement with the test results. Based on this model interpreted by three-dimensional figures, the contribution variation characteristics in the major and minor strength directions were revealed.
Online Access
Free
Resource Link
Less detail

227 records – page 1 of 23.