Skip header and navigation

16 records – page 1 of 2.

An Exploratory Study of Composite Cross-Laminated Timber (CCLT) Made from Bamboo and Hemlock-fir Mix

https://research.thinkwood.com/en/permalink/catalogue2411
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems

Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue640
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Echavarria, Cesar
Echavarría, Beatriz
Cañola, Hernán
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Keywords
Bamboo
CFRP
Load-Deformation
Reinforcement
Stiffness
Strength
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension and along its sides with the carbon fiber-reinforced polymer CFRP or bamboo. A series of CFRP reinforced glulam beams and bamboo reinforced glulam beams were tested to determine their load-deformation characteristics. Experimental work for evaluating the reinforcing technique is reported here. According to experiment results, the CFRP and bamboo reinforcements led to a higher glulam beam performance. By using CFRP and bamboo reinforcements several improvements in strength may be obtained.
Online Access
Free
Resource Link
Less detail

Behaviour of Parallel Bamboo Strand Lumber Under Compression Loading — An Experimental Study

https://research.thinkwood.com/en/permalink/catalogue2514
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
PSL (Parallel Strand Lumber)
Other Materials
Application
Wood Building Systems

Comparative Study on the Failure of TCC and BCC: A Review

https://research.thinkwood.com/en/permalink/catalogue2750
Year of Publication
2020
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Deresa, ST
Xu, JJ
Year of Publication
2020
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Four Point Bending Test
Failure Mode
Bamboo
Language
English
Conference
Structures Congress
Research Status
Complete
Summary
Sustainability is now becoming a major concern in the modern construction industry. Despite being a major economic sector, the construction industry is causing adverse environmental impact. To this end, special attention should be paid to the selection of more "green" construction materials for structural applications. Therefore, a reasonable choice of construction materials can be made on the bases of acceptable structural performance, economic benefits, and sustainability. For instance, the use of composite beams made with traditional concrete and bio-based materials (such as timber and bamboo) is a valuable solution. Timber-Concrete Composite (TCC) beams have been used for decades in various structural applications such as new buildings, refurbishment of old timber structures, and bridges with several environmental benefits. Recently, different researchers proposed composite beams similar to TCC ones but based on engineered bamboo commonly named Bamboo-Concrete Composite (BCC) beams. This study presents comparison of the failure mode of the TCC and BCC beams udder fourpoint bending test. In particular, TCCs beams are compared with BCC ones considering similar shear connectors.
Online Access
Free
Resource Link
Less detail

The Effect of Depth and Diameter of Glued-In Rods on Pull-Out Connection Strength of Bamboo Glulam

https://research.thinkwood.com/en/permalink/catalogue1451
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Other Materials
Author
Yan, Yan
Liu, Huanrong
Zhang, Xiubiao
Wu, Heng
Huang, Yun
Publisher
Springer Japan
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
Other Materials
Topic
Connections
Mechanical Properties
Keywords
Bamboo
Steel Connections
Pullout Tests
Glued-In Rods
Threaded Rods
Pull-Out Strength
Adhesives
Failure Modes
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
In order to explore bamboo glulam utilization in structure construction, the adhesive bonded steel connection of bamboo glulam was investigated in this study. By carrying out both-end pullout tests on glued-in threaded rods in bamboo glulam, the effects of depth and diameter of embedded rods in bamboo glulam on the pullout strength and the failure modes were discussed. Results showed that threaded rods fracture and adhesive interface failure were the two main different failure modes in the tests. The pullout peak load of both-end glued-in rods in bamboo glulam increased with the diameter and the embedded length of the threaded rods. To satisfy tensile load of the glued threaded rods (quality 4.8) used in the connections between engineering structural materials, the slenderness ratio ( , the ratio of depth and diameter of glued-in threaded rods) equal to 10 or over was necessary.
Online Access
Free
Resource Link
Less detail

Effect of Laminated Structure Design on Physical and Mechanical Properties of Laminated Bamboo Sliver Lumber

https://research.thinkwood.com/en/permalink/catalogue2491
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems

Effect of Laminated Structure Design on the Mechanical Properties of Bamboo-Wood Hybrid Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1407
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Other Materials
Author
Chen, Fuming
Deng, Jianchao
Li, Xingjun
Wang, Ge
Smith, Lee
Shi, Sheldon
Publisher
Springer Berlin Heidelberg
Year of Publication
2017
Country of Publication
Germany
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Other Materials
Topic
Mechanical Properties
Design and Systems
Keywords
Bamboo
Poplar
Analytical Model
Density
MOE
MOR
Shear Strength
Glue Lines
Loading Tests
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
The effects of veneer orientation and loading direction on the mechanical properties of bamboo-bundle/poplar veneer laminated veneer lumber (BWLVL) were investigated by a statistical analysis method. Eight types of laminated structure were designed for the BWLVL aiming to explore the feasibility of manufacturing high-performance bamboo-based composites. A specific type of bamboo species named Cizhu bamboo (Neosinocalamus affinis) with a thickness of 6 mm and diameter of 65 mm was used. The wood veneers were from fast-growing poplar tree (Populus ussuriensis Kom.) in China. The bamboo bundles were obtained by a mechanical process. They were then formed into uniform veneers using a onepiece veneer technology. Bamboo bundle and poplar veneer were immersed in water-soluble phenol formaldehyde (PF) resin with low molecular weight for 7 min and dried to MC of 8–12 % under the ambient environment. All specimens were prepared through hand lay-up using compressing molding method. The density and mechanical properties including modulus of elasticity (MOE), modulus of rupture (MOR), and shearing strength (SS) of samples were characterized under loading parallel and perpendicular to the glue line. The results indicated that as the contribution of bamboo bundle increased in laminated structure, especially laminated on the surface layers, the MOE, MOR and SS increased. A lay-up BBPBPBB (Bbamboo, P-poplar) had the highest properties due to the cooperation of bamboo bundle and poplar veneer. A higher value of MOE and MOR was found for the perpendicular loading test than that for the parallel test, while a slightly higher SS was observed parallel to the glue line compared with perpendicular loading. Any lay-up within the homogeneous group can be used to replace others for obtaining the same mechanical properties in applications. These findings suggested that the laminated structure with high stiffness laid-up on the surface layers could improve the performance of natural fiber reinforced composites.
Online Access
Free
Resource Link
Less detail

Elastic Properties of Thermo-Hydro-Mechanically Modified Bamboo (Guadua Angustifolia Kunth) Measured in Tension

https://research.thinkwood.com/en/permalink/catalogue164
Year of Publication
2014
Topic
Mechanical Properties
Moisture
Material
Other Materials
Author
Archila-Santos, Hector
Ansell, Martin
Walker, Pete
Publisher
Scientific.net
Year of Publication
2014
Country of Publication
Switzerland
Format
Journal Article
Material
Other Materials
Topic
Mechanical Properties
Moisture
Keywords
Bamboo
Modulus of Elasticity
Thermo-hydro-mechanical (THM) treatments
Poissons Ratio
Dimensional Stability
Language
English
Research Status
Complete
Series
Key Engineering Materials
Notes
DOI:10.4028/www.scientific.net/KEM.600.111
Summary
Guadua angustifolia Kunth (Guadua) was subjected to thermo-hydro-mechanical (THM) treatments that modified its microstructure and mechanical properties. THM treatment was applied to Guadua with the aim of tackling the difficulties in the fabrication of standardised construction materials and to gain a uniform fibre density profile that facilitates prediction of mechanical properties for structural design. Dry and water saturated Guadua samples were subjected to THM treatment. A densified homogenous flat sheet material was obtained. Mechanical properties of small clear specimens of THM modified Guadua were evaluated by testing in tension and compared to the results of the same test on a control specimen. Samples were tested in the elastic range to determine values for Modulus of Elasticity (MOE) and Poisson’s ratio. There was a significant increase in the tensile MOE values (parallel to the direction of the fibres) for densified samples. MOE values measured were 16.21 GPa, 22.80 GPa and 31.04 GPa for control, densified dry and densified water saturated samples respectively. Oven dry densities for these samples were 0.54 g/cm3, 0.81 g/cm3 and 0.83 g/cm3. Despite a 50 % reduction in the radial Poisson’s ratio for the water saturated sample, no further variation in the Poisson’s ratio as a result of densification was observed for control and densified dry samples. This paper presents the results of the first phase of a study focussed on the manufacturing of flat Guadua sheet (FGS) by THM treatment and the characterization of its mechanical properties. The achievement of a dimensionally stable FGS by THM modification, with a uniform density and achieved with reduced labour effort during manufacture, will be of key importance for the development of structural applications, and could have a significant impact in the bamboo industry. The final aim of the research at the University of Bath is the development of Cross Laminated Guadua (CLG) panels using THM modified and laminated FGS glued with a high performance resin.
Online Access
Free
Resource Link
Less detail

Elastic Response of Cross Laminated Engineered Bamboo Panels Subjected to In-Plane Loading

https://research.thinkwood.com/en/permalink/catalogue1805
Year of Publication
2017
Topic
Mechanical Properties
Material
Other Materials
Author
Archila-Santos, Hector
Walker, Pete
Ansell, Martin
Rhead, Andrew
Lizarazo-Marriaga, Juan
Publisher
ICE Publishing
Year of Publication
2017
Country of Publication
United Kingdom
Format
Journal Article
Material
Other Materials
Topic
Mechanical Properties
Keywords
Compression
Deformation
Elastic Moduli
Bamboo
Panels
G-XLam
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-650X
Online Access
Free
Resource Link
Less detail

Evaluation of the Mechanical Properties of Cross Laminated Bamboo Panels by Digital Image Correlation and Finite Element Modelling

https://research.thinkwood.com/en/permalink/catalogue533
Year of Publication
2014
Topic
Mechanical Properties
Material
Other Materials
Author
Archila-Santos, Hector
Brandon, Daniel
Ansell, Martin
Walker, Pete
Ormondroyd, Graham
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Other Materials
Topic
Mechanical Properties
Keywords
Bamboo
Finite Element Model
Compression
Shear
Digital Image Correlation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Guadua angustifolia Kunth (Guadua) is a bamboo species native to South and Central America that has been widely used for structural applications in small and large scale buildings, bridges and temporary structures. Guadua remains a material for vernacular construction associated with high levels of manual labour and structural unpredictability. The aim of this work is to develop standardised industrial structural products from Guadua and to measure and predict their mechanical behaviour. Cross laminated Guadua (CLG) panels comprised of three and five layers were manufactured and their mechanical properties evaluated by testing small and large specimens in compression and shear. The digital image correlation (DIC) method was used to measure strain variations in the X, Y and Z axes on the surface of small CLG panels with strain gauge measurements on the reverse face. The deformation of large CLG panels was measured using DIC on the front face and transducers on the reverse face. The results from mechanical tests and DIC were compared and a finite element (FE) model developed that predicts the response of the material. Overall, this study provides guidelines for structural design with engineered bamboo products which are of key importance for their mainstream use.
Online Access
Free
Resource Link
Less detail

16 records – page 1 of 2.