Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings.
In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances.
The overall objectives of this stud were threefold:
1. The vibration performance tests were to experimentally determine the dynamic properties, e.g., natural frequencies (periods) and damping ratios of the WIDC building through ambient vibration testing on:
o the bare structure in 2014,
o the finished building upon completion of the construction with occupants in 2015, and
o the finished building after 3 years of service in 2017.
2. The floor vibration tests were to evaluate vibration performance of the innovative CLT floor based on the bare floor fundamental natural frequency, 1 kN static deflection, and subjective evaluation.
3. The sound transmission tests were to determine the Apparent Sound Transmision Class (ASTC) and Apparent Impact Insulation Class (AIIC) of selected innovative CLT floor assemblies.