Skip header and navigation

2 records – page 1 of 1.

Design, Construction, and Maintenance of Mass Timber Post-Tensioned Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2791
Topic
Design and Systems
Seismic
Serviceability
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Design and Systems
Seismic
Serviceability
Keywords
Post-Tensioned
Self-Centering
Shear Walls
Anchoring
Creep
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio at Oregon State University
Summary
Earthquake engineers are focusing on performance-based design solutions that minimize damage, downtime, and dollars spent on repairs by designing buildings that have no residual drift or “leaning” after an event. The development of timber post-tensioned (PT), self-centering rocking shear walls addresses this high-performance demand. The system works by inserting unbonded steel rods or tendons into timber elements that are prestressed to provide a compressive force on the timber, which will pull the structure back into place after a strong horizontal action. But, because these systems are less than fifteen years old with just four real-world applications, little information is known regarding best practices and optimal methods for engineering design, construction and/or tensioning procedures, and long-term maintenance considerations. This project intends to contribute knowledge by testing both cross-laminated timber (CLT) and mass plywood panel (MPP) walls through testing of anchorage detailing, investigating tensioning procedures for construction, determining the contributions of creep on prestress loss over time, and comparing all laboratory test data to monitoring data from three of the four buildings in which this technology has been implemented, one of which is George W. Peavy Hall at Oregon State University. This will be accomplished by testing small- and full-scale specimens in the A.A. “Red” Emmerson Advanced Wood Products Laboratory, and small-scale specimens in an environmental chamber.
Resource Link
Less detail

Investigating the Hysteretic Behavior of Cross-Laminated Timber Wall Systems due to Connections

https://research.thinkwood.com/en/permalink/catalogue1230
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Izzi, Matteo
Polastri, Andrea
Fragiacomo, Massimo
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Mechanical Properties
Keywords
Numerical Model
Mechanical Behavior
Failure Mechanisms
Anchoring
Joints
Load-Displacement
Energy Dissipation
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
Cross-laminated timber (CLT) wall systems are composed of massive timber panels that are fastened together and to the horizontal elements (foundations or intermediate floors) with step joints and mechanical connections. Due to the high in-plane stiffness of CLT, the shear response of such systems depends strongly on the connections used. This paper proposes a numerical model capable of predicting the mechanical behavior and failure mechanisms of CLT wall systems. The wall and the element to which it is anchored are simulated using three-dimensional (3D) solid bodies, while the connections are modeled as nonlinear hysteretic springs. Typical racking tests of wall systems are reproduced by varying the assumptions used to schematize the behavior of the connections. Results are compared with test data published in the literature, and the differences are discussed. The influence of the boundary conditions (vertical load applied on top of the wall and friction at its base) and aspect ratio of the panel are investigated via a parametric numerical study. Finally, the performance of a wall system assembled with two CLT panels is analyzed, highlighting how the properties of the anchoring connections and vertical step joints affect the load-displacement response and energy dissipation.
Online Access
Free
Resource Link
Less detail