Skip header and navigation

19 records – page 1 of 2.

Analysis of Shear Transfer and Gap Opening in Timber–Concrete Composite Members with Notched Connections

https://research.thinkwood.com/en/permalink/catalogue1399
Year of Publication
2017
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Author
Boccadoro, Lorenzo
Steiger, René
Zweidler, Simon
Frangi, Andrea
Publisher
Springer Netherlands
Year of Publication
2017
Format
Journal Article
Material
Timber-Concrete Composite
Topic
Connections
Mechanical Properties
Keywords
Notched Connections
Analytical Model
Shear Stress
Failure
Research Status
Complete
Series
Materials and Structures
Summary
In timber–concrete composite members with notched connections, the notches act as the shear connections between the timber and the concrete part, and have to carry the shear flow necessary for composite action. The shear transfer through the notches generates shear and tensile stresses in both parts of the composite member, which may lead to brittle failure and to an abrupt collapse of the structure. Although simplified design formulas already exist, some structural aspects are still not clear, and a reliable design model is missing. This paper summarizes current design approaches and presents analytical models to understand the shear-carrying mechanism, to estimate the shear stresses acting in the timber and concrete, and to predict failure. The analysis concentrates on three problems: the shearing-off failure of the timber close to the notch, the shear failure of the concrete, and the influence of the shear flow on the gap opening between the timber and concrete. Parts of the model calculations could be compared to experimental observations. The conclusions of this paper contribute to improving current design approaches.
Online Access
Free
Resource Link
Less detail

An Analytical, Numerical and Experimental Study of Non-Metallic Mechanical Joints for Engineered Timber Constructions

https://research.thinkwood.com/en/permalink/catalogue1606
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Bazu, Gheorghe
Mahjourian Namari, Siavash
Wehsener, Jörg
Hartig, Jens
Haller, Peer
Year of Publication
2016
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
GFRP
Densified Veneer Wood
Plates
Dowels
Load Bearing Behaviour
Analytical Model
Numerical Model
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2059-2068
Summary
Timber structures are strongly depending on the design of connections, which are mostly constructed from steel components. However, these joints have a number of limitations such as the tendency to be heavy, proneness to corrosion and often poor aesthetic appearances. Therefore, this study aims to replace metallic joints by non-metallic materials. An experimental testing program was performed to investigate the use of glass fiber reinforced plastics (GFRP), densified veneer wood (DVW) and laminated veneer lumber (LVL) in the form of plates and dowels in different test configurations. Analytical and numerical models were developed to better understand the load-bearing behaviour and to perform static verifications. The models were validated based on the experimental results. The results demonstrate that the use of GFRP dowels in combination with GFRP plates can provide a robust connection system for contemporary applications.
Online Access
Free
Resource Link
Less detail

An innovative timber-steel hybrid beam consisting of glulam mechanically reinforced by means of steel rod: Analytical and preliminary numerical investigations

https://research.thinkwood.com/en/permalink/catalogue3135
Year of Publication
2021
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Wang, Tianxiang
Wang, Yue
Crocetti, Roberto
Franco, Luca
Schweigler, Michael
Wålinder, Magnus
Organization
KTH royal institute of technology
Univiersità IUAV di Venezia
Linnaeus University
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Hybrid Structure
Mechanical Connection
Shear Key
Timber-Steel Hybrid Beam
Analytical Model
Numerical Analysis
Retrofitting Techniques
Research Status
Complete
Series
Journal of Building Engineering
Summary
There is an increasing interest in large-dimensional timber structural elements within the construction sector in order to fulfil the combined demand of sustainability, open spaces and architectural flexibility. Current timber technology allows for efficient production of long-size beams, but many problems are related to their overall high costs due to difficulties in transportation, manufacturing on site and handling during the mounting phase. Hence, the aim of this work is to propose and study an innovative timber-steel hybrid structural element composed of shorter pieces of beams connected and reinforced by means of a system consisting of steel shear keys and steel rods. The small timber elements and steel devices can be prefabricated with low costs and easily assembled into large elements at the construction sites. The proposed system can also be used for retrofitting of existing timber members when it is necessary to increase their strength, stiffness and ductility. The structural behavior of the proposed system was therefore studied both as a connection and as a retrofitting technique, which were analyzed via two types of hybrid beams, one with a splice at mid-span and one without, separately. A simple glulam beam with the same geometrical characteristics of the two hybrid structures was also investigated for the comparison of the structural behavior. The analytical results show that the hybrid beams with and without splice have both obtained significant increasement in the stiffness, strength and ductility. The numerical analyses are limited in the elastic stage due to the elastic mechanical properties assigned to the structural components. The numerical results show good agreement with the analytical ones for each type of beam in terms of the stiffness in the elastic stage. Finally, the influence of the parameters such as the distance between shear keys, slip modulus of shear keys and diameter of rod, on the structural behavior of hybrid beams is discussed in this paper.
Online Access
Free
Resource Link
Less detail

Brittle failure of laterally loaded self-tapping screw connections for cross-laminated timber structures

https://research.thinkwood.com/en/permalink/catalogue3120
Year of Publication
2022
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Author
Azinovic, Boris
Cabrero, José Manuel
Danielsson, Henrik
Pazlar, Tomaž
Organization
Slovenian National Building and Civil Engineering Institute
University of Navarra
Lund University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Keywords
Brittle Failure
Analytical Model
Overstrength
Research Status
Complete
Series
Engineering Structures
Summary
The performance of structural timber connections is of utmost importance since they control the global response of the building. A ductile failure mechanism on the global scale is desirable, especially in the design of structures in seismic areas, where dissipative components in which ductile failure modes need to be ensured are considered. Therefore, the knowledge of possible brittle failure modes of connections is crucial. The paper investigates the brittle failures of laterally loaded dowel-type connections in cross-laminated timber subjected to tensile load in a lap joint configuration through experimental investigations and analytical estimations. A set of 13 different test series has been performed with fully threaded self-tapping screws of 8 mm diameter and different lengths (40 to 100 mm) in cross-laminated timber composed of 3 or 5 layers (layer thickness range from 20 to 40 mm), giving rise to the activation of different brittle failure modes at different depths. Plug shear was among the most typically observed failure modes. A previously proposed model for the brittle capacity was applied to the tested connections at the characteristic level. As shown by the performed statistical analysis, the existing model is not reliable and mainly unconservative. A very low performance is observed (CCC = 0.299), but with a good correlation (c = 0.750) for the tests in the parallel direction. Further research work is required to improve the current model predictions and to gain a better understanding of the underlying resisting mechanisms.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Reinforced with Carbon Fibre

https://research.thinkwood.com/en/permalink/catalogue2661
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Cao, Xinlei
Organization
University of Alberta
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Carbon Fiber
Flexural Stiffness
Stress Distribution
Analytical Model
Finite Element Method (FEM)
Research Status
In Progress
Summary
Although engineered wood products such as glued laminated timber (glulam) and cross-laminated timber (CLT) have successfully eliminated the flaws inherently exist in conventional wood products, they are still not comparable with steel and concrete in terms of strength and stiffness. Among all different options for reinforcement, Carbon Fibre is relatively popular due to its high tensile strength, low weight, and easy installation. This study presents an analysis of flexural stiffness and stress distributions of CLT panels reinforced with carbon fibre mats, based on an analytical method and finite element method (FEM).
Resource Link
Less detail

Design Models for CLT Shearwalls and Assemblies Based on Connection Properties

https://research.thinkwood.com/en/permalink/catalogue369
Year of Publication
2014
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Popovski, Marjan
Gavric, Igor
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Keywords
Lateral Loads
Analytical Model
North America
Europe
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. As currently there are no standardized methods for determining the resistance of CLT shearwalls under lateral loads, the design approaches are left at the descretion of the designers. The most common approach that is currently used in Europe and North America assumes that the resistance of CLT walls is a simple summary of the shear resistance of all connectors at the bottom of the wall. In this report some new analytical models for predicting the design (factored) resistance of CLT walls under lateral loads were developed based on connection properties. These new models were then evaluated for their consistency along with their models that are currently used in North America and in Europe.
Online Access
Free
Resource Link
Less detail

Effective Out-of-Plane Stiffness and Strength of Rotated Cross Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue1622
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Cheng, Alexandra
Schneider, Johannes
Tannert, Thomas
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Analytical Model
Finite Element Model
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2557-2564
Summary
This research considers the effect of in-plane rotation angles on the structural performance of Cross Laminated Timber (CLT) panels. In the interest of expanding the application of CLT to folded or freeform structures, rectangular CLT panels are likely to be divided into irregular geometries, in which case the loading will be applied at an intermediate orientation between the longitudinal and transverse panel axes. Such a loading condition is not accounted for in the existing analytical methods for dimensioning and designing with CLT. An analytical method is proposed which hybridizes the Shear Analogy method with Hankinson’s equation, allowing a designer to determine the effective stiffness of a CLT panel with any layup and at any in-plane rotation angle. An analytical study, followed by implementation with 3D parametric Finite Element Modelling and an experimental investigation, is used to evaluate this method. Results show that cross-grain/in-plane rotation has considerable effect on strength and stiffness of CLT panels with fewer than 5 laminations.
Online Access
Free
Resource Link
Less detail

Effect of Laminated Structure Design on the Mechanical Properties of Bamboo-Wood Hybrid Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1407
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Other Materials
Author
Chen, Fuming
Deng, Jianchao
Li, Xingjun
Wang, Ge
Smith, Lee
Shi, Sheldon
Publisher
Springer Berlin Heidelberg
Year of Publication
2017
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Other Materials
Topic
Mechanical Properties
Design and Systems
Keywords
Bamboo
Poplar
Analytical Model
Density
MOE
MOR
Shear Strength
Glue Lines
Loading Tests
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
The effects of veneer orientation and loading direction on the mechanical properties of bamboo-bundle/poplar veneer laminated veneer lumber (BWLVL) were investigated by a statistical analysis method. Eight types of laminated structure were designed for the BWLVL aiming to explore the feasibility of manufacturing high-performance bamboo-based composites. A specific type of bamboo species named Cizhu bamboo (Neosinocalamus affinis) with a thickness of 6 mm and diameter of 65 mm was used. The wood veneers were from fast-growing poplar tree (Populus ussuriensis Kom.) in China. The bamboo bundles were obtained by a mechanical process. They were then formed into uniform veneers using a onepiece veneer technology. Bamboo bundle and poplar veneer were immersed in water-soluble phenol formaldehyde (PF) resin with low molecular weight for 7 min and dried to MC of 8–12 % under the ambient environment. All specimens were prepared through hand lay-up using compressing molding method. The density and mechanical properties including modulus of elasticity (MOE), modulus of rupture (MOR), and shearing strength (SS) of samples were characterized under loading parallel and perpendicular to the glue line. The results indicated that as the contribution of bamboo bundle increased in laminated structure, especially laminated on the surface layers, the MOE, MOR and SS increased. A lay-up BBPBPBB (Bbamboo, P-poplar) had the highest properties due to the cooperation of bamboo bundle and poplar veneer. A higher value of MOE and MOR was found for the perpendicular loading test than that for the parallel test, while a slightly higher SS was observed parallel to the glue line compared with perpendicular loading. Any lay-up within the homogeneous group can be used to replace others for obtaining the same mechanical properties in applications. These findings suggested that the laminated structure with high stiffness laid-up on the surface layers could improve the performance of natural fiber reinforced composites.
Online Access
Free
Resource Link
Less detail

Experimental testing and analytical modelling of glulam moment connections with self-drilling dowels

https://research.thinkwood.com/en/permalink/catalogue3011
Year of Publication
2021
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Dong, Wenchen
Li, Minghao
He, Minjuan
Li, Zhen
Organization
University of Canterbury
Tongji University
Publisher
ASCE
Year of Publication
2021
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Beam-column Connections
Moment Capacity
Self-drilling Dowels
Experimental Testing
Analytical Model
Research Status
Complete
Series
Journal of Structural Engineering
Notes
Accepted Version
Summary
An experimental and analytical study on rotational behaviour of glulam beam-column moment connections with self-drilling dowels (SDD) was conducted. Connection properties including strength, stiffness, ductility and energy dissipation were experimentally evaluated by testing seven full-scale connection specimens with and without self-tapping screw (STS) reinforcement along timber perpendicular to grain. All the connections showed high initial stiffness and high moment capacity when compared with the test results of bolted connections reported in literature. The unreinforced connections had relatively low ductility due to timber splitting despite the increased fastener edge distance. The STS reinforcement effectively reduced timber splitting tendency and encouraged the yielding of more SDD, leading to slightly increased moment capacity, but significantly improved ductility. A modified analytical model (MAM) was then proposed to predict strength and rotation of the SDD moment connections based on force and moment equilibrium of the glulam members. Improved prediction accuracy was achieved for the SDD moment connections when compared with the past analytical methods.
Online Access
Free
Resource Link
Less detail

19 records – page 1 of 2.