Skip header and navigation

3 records – page 1 of 1.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Guide for Wind-Vibration Design of Wood-Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue379
Year of Publication
2012
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2012
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Keywords
Mid-Rise
High-Rise
Dynamic Properties
Ambient Vibration Tests
Research Status
Complete
Summary
It is not surprising to see a rapid growth in the demand for mid- to high-rise buildings. Traditionally, these types of buildings have been dominated by steel and concrete. This trend creates a great opportunity for wood to expand its traditional single and low-rise multi-family building market to the growing mid- to high-rise building market. The significance and importance of wood construction to environmental conservation and the Canadian economy has been recognized by governments, the building industry, architects, design engineers, builders and clients. It is expected that more and more tall wood frame buildings of 6- to 8-storeys (or taller) will be constructed in Canada. Before we can push for use of wood in such applications, however, several barriers to wood success in its traditional and potential market places have to be removed. Lack of knowledge of the dynamic properties of mid- to high-rise wood and hybrid wood buildings and their responses to wind, and absence of current guidelines for wind vibration design of mid- to high-rise wood and hybrid wood buildings are examples of such barriers.
Online Access
Free
Resource Link
Less detail

Serviceability of New Generation Wood Buildings: Case Study of Two Cross-Laminated Timber (CLT) Buildings

https://research.thinkwood.com/en/permalink/catalogue2644
Year of Publication
2013
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2013
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Serviceability
Acoustics and Vibration
Keywords
Ambient Vibration Tests
Vibration Performance
Sound Insulation
Research Status
Complete
Summary
FPInnovations launched the “Next Generation Building Systems” research program to support the expansion and diversification of wood into new markets. “Next Generation Wood Buildings” can be described as buildings that implement design and construction practices, and use innovative wood-based materials and systems beyond those defined and addressed in current building codes. As part of this program, the serviceability research focuses on addressing issues related to floor and building vibrations, sound transmission and creep. CLT is a next generation wood building material, which is a promising alternative to concrete slabs. To facilitate wood expansion into the market traditionally dominated by steel and concrete, several CLT buildings have been designed or built. Taking this opportunity, we conducted this study on two CLT buildings in the province of Quebec (i.e.,Desbiens and Chibougamau) to collect data that will form a database for the development of design provisions and installation guides for controlling vibrations and noise in CLT floors and buildings. The study also provides some information to designers and architects to strengthen their confidence in using CLT in their building projects. It is our hope that the collaboration through this study demonstrates to both designers and users of CLT buildings that if we work together, we can build good quality CLT buildings. During the construction, ambient vibration tests were conducted on the two CLT buildings to determine their natural frequencies (periods) and damping ratios. Vibration performance tests were conducted on selected CLT floors to determine their frequencies and static deflections. ASTM standard sound insulation tests were conducted on the selected CLT walls and floors in Chibougamau CLT building to develop the sound insulation solutions. After the two CLT buildings were completed, ASTM sound insulation tests were conducted in the selected units to determine the Field Sound Transmission Class (FSTC) of the finished floors and walls, and the Field Impact Insulation Class (FIIC) of the finished floors. We found that in general, the vibration performance of these two CLT buildings and their floor vibration performance are functional. The efforts made by the design engineers, the architects, and the contractors to make it happen are commendable, considering the lack of design provisions and guidelines in building codes for controlling vibrations in such innovative wood floor and buildings. The sound insulation of the selected units in Chibougamau building was very satisfactory. This confirmed that with proper design, construction, and installation of the sound insulation solutions studied in this report, CLT floors, walls and buildings can achieve very good sound insulation. Some specific recommendations for CLT building sound insulation: If flanking paths can be minimized, then it is expected that better sound insulation than what we measured on the CLT floors during the building construction will be achieved ; Increasing the stud spacing from 400mm to 600mm for the wood stud walls enhances the airborne sound insulation of the current wood stud-CLT wall assemblies tested in this study ; Decoupling ceiling from the structure frame and from the CLT floors is a significant factor for cost-effective sound insulation solutions ; Selection of solutions for FSTC and FIIC above fifty (50) for non-carpeted CLT floors will ensure the satisfaction of the majority of occupants ; Conducting subjective evaluation is useful to ensure occupants satisfaction ; For implementation of the sound insulation solutions for floating floors, it is necessary to consult wood flooring and ceramic tiles installation guides for floating the flooring.
Online Access
Free
Resource Link
Less detail