Skip header and navigation

21 records – page 1 of 3.

The Analysis of Bending Stiffness and Strength of Glue Laminated Nigerian Timber

https://research.thinkwood.com/en/permalink/catalogue2579
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Okafor, Kingsley
Ezeagu, Celestine
Publisher
Europa Publishing
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Flexural Strength
Polyurethane
PUR
Adhesive
Timber
Language
English
Research Status
Complete
Series
European Journal of Engineering Research & Science
Summary
An analysis into the flexural strength of solid and laminated timber specimens under working conditions was conducted. Five hardwoods and five softwoods were investigated, namely: Mansonia, Mahogany, Orji, Ukpi, Ufi mmanu, White Afara, Owen, Melina, Akpu and Ubia. The dimensions of the wood specimens are 100mm×50mm×20mm. The wood samples were tested for flexural strength using a Universal Testing Tensile Machine. The results obtained shows that Owen has the highest ultimate wood strength of 46.806N/mm² for the softwood glulam. Ukpi has the highest wood strength of 73.375N/mm² for the hardwood glulam, and highest MOE at 2412.93N/mm². Akpu recorded the weakest sample with bending strength values for glulam at 11.929 N/mm². Comparisons of strength were made to their respective solid timbers. Failure modes were analyzed. The study therefore demonstrates that the timber species used can be engineered to load bearing glulam structural elements using polyurethane adhesive glue without severe loss of strength.
Online Access
Free
Resource Link
Less detail

Analysis of Glue Line and Correlations Between Anatomical Characteristics of Eucalyptus grandis × Eucalyptus urophylla Glued-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2435
Year of Publication
2019
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Application of Modern Wood Product Glulam in Timber Frame with Tenon- Mortise Joints and its Structural Behavior

https://research.thinkwood.com/en/permalink/catalogue2469
Year of Publication
2019
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Wu, Guofang
Zhong, Yong
Gong, Yingchun
Ren, Haiqing
Publisher
Tech Science Press
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Tenon-Mortise Joint
Monotonic Loading
Adhesive
Stiffness
Moment Carrying Capacity
Language
English
Research Status
Complete
Series
Journal of Renewable Materials
Online Access
Free
Resource Link
Less detail

Block Shear Testing of CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2624
Year of Publication
2011
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Pirvu, Ciprian
Wang, Brad
Lum, Conroy
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesive
Block Shear Test
Failure
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of examining the efficacy of a standard block shear test method to assess the bond quality of cross-laminated timber (CLT) products. The secondary objective was to examine the effect of pressure and adhesive type on the block shear properties of CLT panels. The wood material used for the CLT samples was Select grade nominal 25 x 152-mm (1 x 6-inch) Hem-Fir. Three adhesive types were evaluated under two test conditions: dry and vacuum-pressure-dry (VPD), the latter as described in CSA standard O112.10. Shear strength and wood failure were evaluated for each test condition. Among the four properties evaluated (dry and VPD shear strength, and dry and VPD wood failure), only the VPD wood failure showed consistency in assessing the bond quality of the CLT panels in terms of the factors (pressure and adhesive type) evaluated. Adhesive type had a strong effect on VPD wood failure. The different performance levels of the three adhesives were useful in providing insights into how the VPD block shear wood failure test responds to significant changes in CLT manufacturing parameters. The pressure used in fabricating the CLT panels showed a strong effect on VPD wood failure as demonstrated for one of the adhesives. VPD wood failure decreased with decreasing pressure. Although dry shear wood failure was able to detect the effect of pressure, it failed to detect the effect of adhesive type on the bond quality of the CLT panels. These results provide support as to the effectiveness of the VPD block shear wood failure test in assessing the bond quality of CLT panels. The VPD conditioning treatment was able to identify poor bondline manufacturing conditions by observed changes in the mode of failure, which is also considered an indication of wood-adhesive bond durability. These results corroborate those obtained from the delamination test conducted in a previous study (Casilla et al. 2011). Along with the delamination test proposed in an earlier report, the VPD block shear wood failure can be used to assess the CLT bond quality. Although promising, more testing is needed to assess whether the VPD block shear wood failure can be used in lieu of the delamination test. The other properties studied (shear strength and dry wood failure), however, were not found to be useful in consistently assessing bond line manufacturing quality.
Online Access
Free
Resource Link
Less detail

Construction and Testing of Glued Laminated Timber Frames For Use in Laying Poultry Houses

https://research.thinkwood.com/en/permalink/catalogue2588
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems
Author
Stringari, Eduardo
Petrauski, Alfredo
Petrauski, Sandra
Azevedo, Ricardo
Savaris, Gustavo
Publisher
SciELO
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems
Topic
Design and Systems
Keywords
Adhesive
Structural Behavior
Rural Buildings
Araucaria angustifolia
Language
English
Research Status
Complete
Series
Engenharia Agrícola
Summary
This study aimed to present a solution in glued laminated timber to replace frame structures built in reinforced concrete and metallic structure, which are common in agricultural buildings in western Paraná such as those destined to laying poultry house building by agricultural cooperatives. Structural behavior of frames build from Araucaria angustifolia glued boards and vegetable oil-based polyurethane adhesive was evaluated. Tests were carried out to characterize wood and adhesive to obtain verification/sizing parameters. Initially, a full-scale structural project was conducted to meet standard laying poultry house specifications. Afterwards, five units of straight three-articulated frames on a 1:2.5 reduced scale were designed, built, and subjected to strength tests until breaking. They were built with a 2-meter free span and a 15° slope, suitable for using metal roof tiles. The average for structure ultimate strength was 4.14 times the design load. Structures had satisfactory mechanical performance and displacements lower than those recommended by NBR 7190 (1997) standard (ABNT). Therefore, building glued frames with Parana pine boards and vegetable oil-based glue is technically feasible.
Online Access
Free
Resource Link
Less detail

Delamination Testing of CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2626
Year of Publication
2011
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Pirvu, Ciprian
Wang, Brad
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesive
Bond Quality
Delamination Test
Strength
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of examining the efficacy of delamination test using cylindrical core specimens to assess the bond quality of cross laminated timber (CLT) products. A prototype coring drill bit was fabricated to prepare a cylindrical-shaped specimen, the height of which corresponds to the full thickness of the CLT panel. A secondary objective was to examine the effect of pressure, adhesive type, number of plies, and specimen shape on the delamination resistance of CLT panels. The wood material used for the CLT samples was Select grade nominal 1 x 6-inch Hem-Fir boards. Examples of three adhesive types were evaluated, which were designated as A, B, and C. The delamination tests used were as described in CAN / CSA O122-06 and EN 302-2. Cylindrical specimen extracted as core was found satisfactory as a test specimen type for use in delamination testing of CLT product. Its efficacy was comparable to that of a square cross-section specimen. The former is recommended as it can be extracted from thicker panels and from any location in the panel. It would also be more convenient to plug the round hole. Adhesive type had a strong effect on delamination resistance based on the two delamination tests used. Adhesive A exhibited the greatest delamination resistance, followed in decreasing order, by adhesives C and B. It should be noted that no effort was made to find the optimum CLT manufacturing parameters for each type of adhesive. Therefore the relative rankings of the adhesives tested may not be representative. However, for the purposes of this study, the different performance levels from the three adhesives are useful in providing insight into how the proposed delamination test responds to significant changes in CLT manufacturing parameters. Pressure used in fabricating the CLT panel showed a strong effect on delamination resistance as demonstrated for one of the adhesives. Delamination resistance decreased with decreasing pressure. The effect of the number of plies in the CLT panel was dependent upon the type of adhesive, and this was probably related to the adhesive’s assembly time characteristic. These results provide support as to the effectiveness of delamination test in assessing the moisture durability of CLT panels. It was able to differentiate the performance in delamination resistance among different types of adhesives, and able to detect the effect of manufacturing parameters such as pressure and increased number of plies in CLT construction. The test procedure described in CAN / CSA O122-06 appears to be reasonable in the delamination resistance assessment of CLT panels for qualification and quality control testing. Based on the results of the study along with some background information and guidelines, delamination requirements for CLT panels are proposed. The permitted delamination values are greater than those currently specified for laminated and fingerjoined lumber products. This is in recognition of the higher bond line stresses when bonded perpendicular laminations (i.e. CLT) are exposed to the delamination wetting and drying cycles, as opposed to parallel laminations (i.e. glulam or fingerjoints).
Online Access
Free
Resource Link
Less detail

Design and Dimensioning of a Complex Timber-Glass Hybrid Structure: The IFAM Pedestrian Bridge

https://research.thinkwood.com/en/permalink/catalogue1797
Year of Publication
2016
Topic
Design and Systems
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Author
Vallée, Till
Grunwald, Cordula
Milchert, Lena
Fecht, Simon
Publisher
Springer International Publishing
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Joint
Bonding
Standards
Codes
Adhesive Connection
Language
English
Research Status
Complete
Series
Glass Structures & Engineering
ISSN
2363-5142
Online Access
Free
Resource Link
Less detail

Development of CLT Panels Bond-in Method for Seismic Retrofitting of RC Frame Structure

https://research.thinkwood.com/en/permalink/catalogue1860
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Author
Haba, Ryota
Kitamori, Akihisa
Mori, Takuro
Fukuhara, Takeshi
Kurihara, Takaaki
Isoda, Hiroshi
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Topic
Seismic
Design and Systems
Keywords
Retrofit
Earthquake
Panels
Adhesive
Bonding
Language
Japanese
Research Status
Complete
Series
Journal of Structural and Construction Engineering: Transactions of AIJ
Online Access
Free
Resource Link
Less detail

Enhancing Thermal and Mechanical Performance of Engineered Wood Product Adhesives Using Novel Fire Retardant Nanoclays

https://research.thinkwood.com/en/permalink/catalogue2550
Topic
Fire
Country of Publication
Canada
Topic
Fire
Keywords
Adhesive
Fire-retardant
Nanoclays
Research Status
In Progress
Notes
Project contact is Feng Jiang at the University of British Columbia
Summary
This project investigates a new method to modify the adhesives used in engineered wood products using fire-retardant nanoclays to improve their thermal stability and reduce the potential fire hazards.
Less detail

21 records – page 1 of 3.