Skip header and navigation

25 records – page 1 of 3.

An Overview of CLT Research and Implementation in North America

https://research.thinkwood.com/en/permalink/catalogue759
Year of Publication
2016
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Pei, Shiling
Rammer, Douglas
Popovski, Marjan
Williamson, Tom
Line, Philip
van de Lindt, John
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Market
North America
Building Development
Research
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
Although not yet seen as common practice, building with cross laminated timber (CLT) is gaining momentum in North America. Behind the scenes of the widely publicized project initiatives such as the Wood Innovation Design Centre Building in Canada and the recent U.S. Tall Wood Building Competition, substantial research, engineering, and development has been completed or is underway to enable the adoption of this innovative building system. This paper presents a brief overview of the current status of CLT building development in North America, highlighting some recent U.S. and Canadian research efforts related to CLT system performance, and identifies future CLT research directions based on the needs of the North American market. The majority of the research summarized herein is from a recent CLT research workshop in Madison, Wisconsin, USA, organized by the USDA Forest Products Laboratory. The opportunity and need for coordination in CLT research and development among the global timber engineering community are also highlighted in the conclusions of this paper.
Online Access
Free
Resource Link
Less detail

Bending and Rolling Shear Capacities of Southern Pine Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1596
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Gu, Mengzhe
Pang, Weichiang
Stoner, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Southern Pine
US
Manufacturing
Rolling Shear
Bending
Three Point Bending Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1899-1906
Summary
Southern Pine (SP) is one of the fastest growing softwood species in the Southern Forest of United States. With its high strength to weight ratio, SP becomes an ideal candidate for manufacturing engineered wood products such as cross laminated timber (CLT). Two batches of CLT panels were manufactured using visually graded SP lumbers in this study: pilot-scale panels in a laboratory setting and full-size panels in a manufacturing plant environment. The first batch of pilot-scale CLT panels was manufactured at Clemson University. The second batch of full-scale CLT panels (3m x 12.2m) was produced and CNC-sized by Structurlam in Penticton, Canada and shipped to Clemson University for testing. Four types of structural wood adhesives were selected in the panel production, namely Melamine Formaldehyde (MF), Phenol Resorcinol Formaldehyde (PRF), Polyurethane (PUR) and Emulsion Polymer Isocyanate (EPI). This paper presents the manufacturing process of SP CLT in a laboratory setting as well as structural performance verification of 3- ply SP CLT in terms of rolling shear and bending properties. The obtained performance data of 3-ply CLT in both major and minor strength directions is verified against PRG-320 Standard for Performance Rated Cross Laminated Timber. Tested results are presented and discussed.
Online Access
Free
Resource Link
Less detail

Design of Multiple Bolted Connections for Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue252
Year of Publication
2014
Topic
Connections
Design and Systems
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Yeh, Borjen
Rammer, Douglas
Linville, Jeff
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Design and Systems
Keywords
National Design Specifications for Wood Construction (NDSR)
Failure Modes
Bolted Connection
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1 Douglas fir-Larch laminating lumber, the NDS provisions were confirmed by additional analysis, which indicates the applicability of the provisions to glulam with reduced design shear values. Due to the similarity to glulam in the grain orientation and layup strategy, laminated veneer lumber (LVL) is subject to similar failure modes. As a result, a study was initiated by APA – The Engineered Wood Association and the LVL industry, in collaboration with the Forest Products Laboratory (FPL) of the U.S. Department of Agriculture (USDA) to evaluate if a reduced design shear stress is necessary for LVL under similar multiple bolted connection configurations. This paper describes the test results obtained from the study, which indicate that an adequate load factor exists for LVL multiple bolted connections without a reduction in the LVL design shear stress when designed in accordance with Appendix E of the NDS.
Online Access
Free
Resource Link
Less detail

Determination of Seismic Performance Factors for CLT Shear Wall Systems

https://research.thinkwood.com/en/permalink/catalogue770
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Amini, M. Omar
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Line, Philip
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Angle Bracket
Cyclic Tests
US
Quasi-Static
Seismic Performance Factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
This paper presents selected results of connector testing and wall testing which were part of a Forest Products Lab-funded project undertaken at Colorado State University in an effort to determine seismic performance factors for cross laminated timber (CLT) shear walls in the United States. Archetype development, which is required as part of the process, is also discussed. Connector tests were performed on generic angle brackets which were tested under shear and uplift and performed as expected with consistent nail withdrawal observed. Quasi-static cyclic tests were conducted on CLT shear walls to systematically investigate the effects of various parameters. Boundary constraints and gravity loading were both found to have a beneficial effect on the wall performance, i.e. higher strength and deformation capacity. Specific gravity also had a significant effect on wall behaviour while CLT thickness was less influential. Higher aspect ratio panels (4:1) demonstrated lower stiffness and substantially larger deformation capacity compared to moderate aspect ratio panels (2:1). However, based on the test results there is likely a lower bound of 2:1 for aspect ratio where it ceases to have any beneficial effect on wall behaviour. This is likely due to the transition from the dominant rocking behaviour to sliding behaviour.
Online Access
Free
Resource Link
Less detail

Dynamic and Static Lateral Load Tests on Full-Sized 3-Storey CLT Construction for Seismic Design

https://research.thinkwood.com/en/permalink/catalogue481
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tsuchimoto, Takahiro
Kawai, Naohito
Yasumura, Motoi
Miyake, Tatsuya
Isoda, Hiroshi
Tsuda, Chihiro
Miura, Sota
Murakami, Satoshi
Nakagawa, Takafumi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Shake Table Test
Lateral Load Test
Shear Displacement
Joint Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Japanese domestic forests have never been maintained enough, and it was a great fear that the multiple functions of the forest such as watershed conservation, the land conservation, and so on has been declined. The construction employing the cross laminates timber (CLT) panels was offered as a method of large scale building in domestic and foreign countries. However, the seismic design method of CLT panel construction has never completed. So, in order to consider the seismic design method, the shaking table tests and static lateral load tests were conducted to the modelized CLT panel construction.
Online Access
Free
Resource Link
Less detail

Effect of Adhesives and Ply Configuration on the Fire Performance of Southern Pine Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1682
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Author
Hasburgh, Laura
Bourne, Keith
Peralta, Perry
Mitchell, Phil
Schiff, Scott
Pang, Weichiang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Fire
Keywords
Southern Pine
Adhesives
Ply Configuration
Fire Performance
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Polyurethane
Emulsion Polymer Isocyanate
Delamination
Char Rate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4031-4038
Summary
Thirteen Southern pine cross-laminated timber panels were tested in the intermediate scale horizontal furnace at the Forest Products Laboratory to determine the effects different adhesives and ply configuration had on fire performance. Four different adhesives were tested: melamine formaldehyde (MF), phenol resorcinol formaldehyde (PRF), polyurethane reactive (PUR), and emulsion polymer isocyanate (EPI). There were two ply configurations: Long-Cross-Long (LCL) or Long-Long-Cross (LLC) where “long” indicates the wood was parallel to the longer edge of the panel. The MF and the PRF prevented delamination and associated problems while the LLC configuration resulted in uneven charring patterns.
Online Access
Free
Resource Link
Less detail

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

Evaluation of Brazilian Reforestation Species in Glulam Beams Before and After Preservative Chemical Treatments

https://research.thinkwood.com/en/permalink/catalogue511
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
de Alcântara Segundinho, Pedro
Calil Neto, Carlito
Dias, Antonio
Calil Junior, Carlito
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Brazil
Static Bending Test
Chemical Treatment
Copper Chrome Arsenic
Copper Chrome Boron
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Although the glulam is a product of the nineteenth century, there are few industries in Brazil. The high cost of the structural elements of glulam is committed at the time, its competitiveness with full tropical sawn timber and reforestation. Being a tropical country, we recommend the use of wood treated to prevent termites attack. This study aims to evaluate the resistance of glulam beams before and after being subjected to chemical treatments with pressure using CCA (Copper Chrome Arsenic) and CCB (Copper Chrome Boron). To that end, we tested 54 glulam beams with nominal dimensions of 9 cm x 9 cm x 200 cm, with wood harvested from forest plantations. These beams were subjected to static bending tests, according to Brazilian standard NBR 8458:1984. After analyzing the experimental data it was concluded that the glulam beams produced from wood of Pinus oocarpa had the best results, taking into account the combination wood-adhesive-treatment, because the physical properties remained the same before and after chemical treatment in fullcell method.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Evaluation of Cross-Laminated Timber (CLT) Panels Produced with Pine Timber from Thinnings in Uruguay

https://research.thinkwood.com/en/permalink/catalogue1601
Year of Publication
2016
Topic
Market and Adoption
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Baño, Vanesa
Godoy, Daniel
Vega, Abel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Market and Adoption
Mechanical Properties
Keywords
Uruguay
Pine
Finite Element Model
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1948-1955
Summary
Due to the high volume of timber required for manufacturing, the production of cross-laminated timber (CLT) panels could be an appropriate destiny for the existing surplus of pinewood presently available in Uruguay. Although wood construction is uncommon in this country, there are some companies with the capacity to adapt their production to new products such as CLT. This work evaluates the properties of CLT panels manufactured in Uruguay with local pine (Pinus taeda and Pinus elliiottii) from forest plantation thinning, which typically present low mechanical properties. Boards and panels were mechanically tested and the mechanical properties were determined, showing a strength class lower than C14. A numerical model, using the finite element method, was developed and the numerical results were compared with the experimental values. The results provided a first approach to the conditions and limitations of the use of CLT panels for building floors, produced under the current manufacturing conditions in Uruguay.
Online Access
Free
Resource Link
Less detail

Full-Scale Fire Tests of a Two-Story Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1826
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hasburgh, Laura
Zelinka, Samuel
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Compartment Fire Test
Mass Timber
Full-Scale Fire Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23, 2018, Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.